双馈风机串补并网次同步振荡与谐振仿真模型研究:风速与串补度可调下的理想运行结果分析,双馈风机串补并网次同步振荡与谐振仿真模型研究:风速与串补度可调下的理想运行结果及DFIG-SSO SSR Simulink仿真分析,双馈风机次同步振荡仿真模型,提供 双馈风机经串补并网次同步振荡 谐振仿真模型 DFIG-SSO SSR simulink仿真,附参考文献 风速可调,串补度可调,运行结果很理想 ,双馈风机; 次同步振荡; 仿真模型; 串补并网; 谐振; DFIG-SSO SSR; Simulink仿真; 风速可调; 串补度可调; 运行结果。,双馈风机经串补并网仿真模型及SSO、SSR现象分析
2025-09-25 21:48:09 4.19MB
1
内容概要:本文介绍了LC_VCO(电感电容压控振荡器)的基本原理、电路结构、仿真方法及设计实践,适用于锁相环(PLL/CPPLL)系统中的高频信号生成。内容涵盖电感与电容的关键参数(如Q值、Rs、Rp、阻抗特性)、四种电路结构(N型、P型、NP互补型、带/不带尾电流源)、多种工艺库支持(tsmc18rf、smic55、tsmc65),以及1.8V/3.3V供电下2.4GHz或4.8GHz中心频率的设计目标,相位噪声低于-110dBc/Hz,功耗低于10mW。提供完整testbench、仿真公式、参数设置教程和参考PDF文档,便于新手逐步掌握仿真与优化流程。 适合人群:具备基本模拟电路知识的电子工程专业学生、射频集成电路初学者及工作1-3年的硬件研发人员。 使用场景及目标:①学习LC_VCO在PLL中的核心作用;②掌握电感电容建模与高频仿真方法;③实践不同结构与工艺下的性能对比;④完成低功耗、低相位噪声振荡器的设计验证。 阅读建议:建议结合提供的testbench进行实操仿真,先从单元件L/C特性入手,再逐步过渡到完整电路仿真,配合参考文档理解参数影响与优化策略。
2025-09-24 20:17:34 1.08MB
1
PSRR仿真教程:使用Cadence psspxf对分频器和环形压控振荡器电路进行PSRR仿真测量,提升电路对噪声源的免疫力,PSRR 仿真教程, 怎么仿真电路的psrr? [1]两个电路案例,一个是16分频的分频器; [2]一个是250MHz的环形压控振荡器; 仿真方法是用Cadence的psspxf。 PSRR的测量对于改善对噪声源的免疫力很重要; 如电源涟漪由于干扰或系统的数字部分。 同样的方法也被用来测量通过其深层耦合的基底噪声的影响。 ,PSRR仿真教程; 仿真电路的PSRR; 两个电路案例; 16分频分频器; 250MHz环形压控振荡器; Cadence的psspxf仿真方法; PSRR的测量; 电源涟漪干扰; 系统数字部分影响; 基底噪声影响。,"Cadence下PSRR仿真教程:16分频分频器与250MHz环形振荡器案例详解"
2025-09-23 16:50:15 469KB
1
LC正弦振荡器是一种能够产生正弦波信号的电路,其主要原理是利用电感(L)和电容(C)的谐振特性来维持持续的电磁振荡。在这个实验中,我们将关注一种特殊的LC振荡器——电容三段式西勒振荡器。 一、LC正弦振荡器的基本原理 正弦振荡器的核心是满足谐振条件的LC回路,即电感和电容的串联或并联组合,当电感和电容的乘积等于信号频率的平方乘以真空介电常数和磁导率时,电路达到谐振状态。在这种状态下,电路能够储存和释放能量,从而产生稳定的振荡。 二、电路设计 本实验设计了一个电容三段式西勒振荡器,其中电容被分成了三个部分:C1、C2和C3。选择这样的配置是为了调整电路的谐振频率,并实现稳定的振荡。根据题目要求,设计的中心频率为10MHz。通过计算,选取了14.7μH的电感L和特定值的电容,分别是627pF、330pF和330pF。反馈系数(即电压增益)的设定也对振荡器的工作状态至关重要,它决定了电路能否稳定振荡。 三、电路仿真 在Multisim仿真软件中,模拟了电路的行为,通过示波器观察到输出的波形,并使用频率计测量了实际的输出频率。这一步骤验证了理论计算的准确性,并允许我们观察到实际操作中可能存在的偏差。 四、实验讨论 1. 频率偏差:实际测量的频率低于估算值,可能是忽略了电容误差或者环境温度变化对电容值的影响。 2. 反馈系数与频率的关系:反馈系数越大,振荡频率会降低,当超过一定阈值时,可能会导致振荡器停止振荡。 3. 振荡条件:满足2nφ=π∑,且放大反馈因子AF大于1,是振荡器能够稳定工作的必要条件。 4. 电压与负载的影响:电压提供静态工作点,不足会导致频率下降甚至停振;负载对放大倍数有影响,过小可能导致无法满足起振条件。 5. 电路类型与频率稳定性:不同的电路结构(如电容三段式、席勒振荡器、晶振电路)和环境因素(如温度)都会影响晶体振荡器的频率稳定性。 6. 测量技巧:在电路输出端添加隔离器可以防止停振,同时调节GATE TIME以获取更精确的频率读数。 通过这个实验,学生不仅能了解LC正弦振荡器的工作原理,还能掌握其设计和调试方法,对电路参数的选择以及环境因素的影响有深入的理解。这种实践经验对于提升电子工程专业学生的实践能力和理论知识的结合至关重要。
2025-09-22 23:53:34 407KB
1
"基于PSCAD和Matlab的网侧变换器阻抗模型及阻抗扫描技术研究:弱交流电网下的次同步振荡仿真分析",电力电子网侧变器,阻抗模型和阻抗扫描,PSCAD,matlab均可。 有pscad次同步振荡仿真模型,投入弱交流电网,引发SSO。 网侧变阻抗模型建立,bode图阻抗扫频。 ,电力电子网侧变换器;阻抗模型;阻抗扫描;PSCAD仿真;SSO;Bode图阻抗扫频,基于PSCAD与Matlab的网侧变换器阻抗模型及阻抗扫描研究 在当今电力系统中,电力电子网侧变换器(网侧变流器)的应用越来越广泛,特别是在弱交流电网系统中,这类设备的操作和控制对电网稳定性的影响尤为重要。网侧变换器能够在电能转换和控制过程中发挥关键作用,但其操作也可能引起一些稳定性问题,如次同步振荡(SSO)。SSO是电力系统中的一种振荡现象,其频率位于电网基波频率以下,可能会导致设备损坏和电网失稳。 针对这一问题,研究者们开发了基于PSCAD和Matlab的仿真技术,以建立精确的网侧变换器阻抗模型,并通过阻抗扫描技术来分析和预测SSO的发生。PSCAD(Power System Computer-Aided Design)是一个用于电力系统动态模拟的强大工具,而Matlab则是广泛应用于工程计算、数据分析、算法开发的软件平台。结合这两种工具,研究者可以进行复杂的电力系统仿真分析。 阻抗模型是一种描述电力系统中各部分对电流或电压变化反应的数学模型。在网侧变换器的研究中,阻抗模型尤为重要,因为它可以准确反映变流器对电网的影响,尤其是在频率变化时的响应。通过构建这样的模型,研究者能够分析阻抗在不同频率下的特性,这通常通过Bode图来展示。Bode图是一种用来表示线性系统频率响应的图形方法,它以对数尺度显示增益和相位随频率变化的情况。 阻抗扫描技术则是一种分析系统稳定性的方法,它涉及到对阻抗模型进行一系列的频率扫描测试,以确定可能导致不稳定性或振荡的频率区间。在网侧变换器中,阻抗扫描有助于识别可能的共振点,这些共振点可能会引起SSO等问题。 本文档集合中的文件名称揭示了研究的主题和研究的过程。例如,“电力电子网侧变换器引发的次同步振荡研究一引言”可能提供了一个全面的背景介绍,阐述了研究的重要性和目的。文件“电力电子网侧变换器与阻抗模型”和“电力电子网侧变换器及其阻抗模型在问题中的应用”很可能是探讨阻抗模型建立方法和应用的详细文档。而“电力电子网侧变器阻抗模型和阻抗扫描均可有次”可能包含阻抗扫描技术的具体应用和研究结果。图片文件(如1.jpg, 2.jpg, 3.jpg, 4.jpg)可能是仿真结果的可视化表达,帮助理解电网和变换器的交互。文本文件“电力电子网侧变换器与次同步振荡仿真分析.txt”可能包含对仿真分析结果的总结和讨论。 通过对网侧变换器阻抗模型的深入研究和阻抗扫描技术的应用,可以在设计和操作阶段采取措施减少SSO的发生概率,提高电网的稳定性和变流器的可靠性。这一研究不仅为电力系统工程师提供了新的工具和方法,也为电网安全运行提供了理论支持和实践指导。
2025-09-18 10:07:36 797KB rpc
1
电力电子网侧变换器的阻抗模型及其在PSCAD和MATLAB中的仿真研究。首先阐述了电力电子网侧变换器的基本概念及其阻抗模型的重要性,接着讨论了PSCAD软件在阻抗模型建立和阻抗扫描中的应用。文中还特别关注了次同步振荡(SSO)现象,解释了其概念、特点及对电力系统的潜在威胁,并展示了PSCAD在SSO仿真中的具体应用。此外,文章还探讨了网侧变换阻抗模型的建立方法及其Bode图分析,强调了这些技术手段对电力系统稳定性和安全性的重要意义。 适合人群:从事电力电子技术研究的专业人士、高校师生及相关领域的研究人员。 使用场景及目标:适用于希望深入了解电力电子网侧变换器阻抗特性的科研工作者和技术人员,旨在帮助他们掌握阻抗模型建立、阻抗扫描及SSO仿真的方法,从而提升电力系统的稳定性和可靠性。 其他说明:本文不仅提供了理论分析,还结合了具体的仿真案例,使读者能够更好地理解和应用所介绍的技术。
2025-09-18 09:47:06 646KB 电力电子 MATLAB 次同步振荡
1
电力电子网侧变换器的阻抗模型建立与SSO仿真研究:基于PSCAD和MATLAB的阻抗扫描分析,电力电子网侧变换器的阻抗模型建立与仿真分析:基于PSCAD和Matlab的阻抗扫描与次同步振荡研究,电力电子网侧变器,阻抗模型和阻抗扫描,PSCAD,matlab均可。 有pscad次同步振荡仿真模型,投入弱交流电网,引发SSO。 网侧变阻抗模型建立,bode图阻抗扫频。 ,电力电子网侧变换器;阻抗模型;阻抗扫描;PSCAD仿真;SSO;Bode图,基于PSCAD的网侧变换器阻抗模型与SSO仿真分析 电力电子技术在现代电力系统中扮演着越来越重要的角色,特别是在网侧变换器的应用方面。网侧变换器作为连接电网与可再生能源装置的重要设备,其性能直接影响到整个系统的稳定性和效率。在此背景下,对网侧变换器进行精确的阻抗建模和仿真分析显得尤为重要,尤其是在考虑次同步振荡(SSO)现象时。 阻抗模型的建立是电力系统分析的核心环节之一,它能够帮助工程师预测系统在不同工况下的动态响应。通过使用专业仿真软件如PSCAD和MATLAB,研究人员能够进行阻抗扫描分析,从而揭示系统内部的动态特性和潜在的稳定性问题。这种分析方法在研究SSO方面尤为关键,因为SSO是一种由于电气系统中阻抗不匹配导致的有害振荡现象,它可能会损害设备并降低电力系统的可靠性。 在电力电子网侧变换器的研究中,阻抗扫描分析是一种常用的手段,它通过测量和分析设备在不同频率下的阻抗特性,来评估设备对电网稳定性的影响。Bode图作为一种图形化的工具,常用来表示系统频率响应,通过Bode图可以直观地观察到系统增益和相位的变化,从而对系统的动态性能做出判断。 电力电子网侧变换器技术的发展不断推动着新的研究课题的出现,例如,将变换器接入弱交流电网可能会引发SSO,这就需要通过仿真模型来研究和预防。因此,建立准确的网侧变换器阻抗模型,并利用仿真工具进行深入分析,是确保电力系统稳定运行和提高可再生能源利用率的关键。 本研究聚焦于电力电子网侧变换器的阻抗建模与分析,特别关注于基于PSCAD和MATLAB软件平台的阻抗扫描技术以及在模拟SSO时的运用。通过对网侧变换器的深入研究,本研究旨在提升电力系统的稳定性和可靠性,同时为相关技术的进一步发展提供理论基础和实践指导。
2025-09-18 09:45:46 2.04MB paas
1
内容概要:本文详细探讨了电力电子网侧变换器的阻抗模型及其仿真方法,重点介绍了利用PSCAD和Matlab进行阻抗扫描的技术细节。文章首先解释了次同步振荡(SSO)的危害及其在弱电网环境下的表现,随后展示了如何通过构建LCL滤波器的阻抗传递函数来分析系统的稳定性。文中还提供了具体的Matlab代码示例,用于绘制Bode图以识别谐振点,并讨论了实际测试中可能出现的问题及解决办法。此外,文章介绍了PSCAD中的Current Injection法实测阻抗的方法,强调了正确设置扫描信号幅值的重要性。最后,作者分享了使用粒子群算法优化电流环PI参数的经验,以及阻抗扫描的最佳实践。 适合人群:从事电力电子、电力系统稳定性和仿真工作的工程师和技术人员。 使用场景及目标:①理解和掌握电力电子网侧变换器的阻抗模型建立方法;②学会使用PSCAD和Matlab进行阻抗扫描和仿真;③提高对次同步振荡的认识,避免实际工程中的潜在风险。 其他说明:文章不仅提供了理论知识,还结合了实际案例和编程实例,帮助读者更好地理解和应用相关技术。
2025-09-18 09:44:05 731KB 电力电子 Matlab 次同步振荡
1
内容概要:本文详细介绍了电力电子网侧变换器的阻抗模型及其阻抗扫描技术的研究,重点讨论了PSCAD和MATLAB这两种仿真工具的应用。文中首先解释了电力电子网侧变换器的基本概念及其阻抗模型的定义,接着阐述了PSCAD软件在阻抗模型建立和阻抗扫描中的具体应用。此外,还特别关注了次同步振荡(SSO)这一电力系统的非线性现象,探讨了其成因、特点及对系统稳定性的潜在威胁。通过PSCAD仿真模型,能够有效模拟并分析SSO现象,从而为电力系统的优化设计提供了理论依据和技术支持。最后,文章强调了Bode图在阻抗扫频分析中的重要作用,进一步验证了网侧变换器的频率响应特性。 适用人群:从事电力电子技术研究的专业人士,尤其是对网侧变换器阻抗模型和次同步振荡感兴趣的科研人员和工程技术人员。 使用场景及目标:适用于希望深入了解电力电子网侧变换器阻抗特性和次同步振荡机制的研究人员。目标是在理论层面掌握阻抗模型的构建方法,在实践中利用PSCAD和MATLAB进行仿真分析,最终提高电力系统的稳定性和安全性。 其他说明:本文不仅提供了详细的理论分析,还结合了大量的实例和图表,帮助读者更好地理解和应用所介绍的技术手段。
2025-09-18 09:35:54 914KB 电力电子 MATLAB 次同步振荡
1
中微子的质量层次,CP违反和θ23的八分圆是中微子振荡的基本未知数。 为了解决所有这三个未知数,我们研究了一个装置的物理范围,在该装置中,我们用静止的μ子衰减产生的中微子(μ-DAR)代替了T2HK的中微子运行。 这种方法的优点是在中微子和反中微子模式下都具有较高的统计量,并且抗中微子运行的波束背景较低,系统性也有所降低。 我们发现,由T2HK(ν)和μ-DARν¯$$ \ left(\ overline {\ nu} \ right)$$组成的混合设置以及来自T2K和NOνA的完全曝光可以解决以下问题: 质量等级大于3σCL 无论选择哪个层次,δCP和θ23。 这种混合设置还可以在5σC.L处建立CP违反。 对于δCP的约55%的选择,而传统的T2HKν+ν$$ $$ \ left(\ nu + \ overline {\ nu} \ right)$$以及T2K和NOνA的设置约为30%。 就θ23的八分圆而言,此混合设置可以排除5σC.L下的错误八分圆。 如果θ23与任何δCP的最大混合相距至少3°。
2025-09-16 10:03:42 536KB Open Access
1