内容概要:本文详细介绍了使用MATLAB进行多水下航行器(AUV)协同定位的仿真研究。首先构建了一个简化的双AUV场景,其中一个作为Leader配备高精度惯性导航系统,另一个作为Follower仅有低成本传感器。通过引入扩展卡尔曼滤波(EKF),实现了基于相对距离测量的状态估计优化。文中展示了具体的MATLAB代码实现,包括系统参数初始化、运动模型建立、相对位置测量以及EKF更新步骤。实验结果表明,经过多次协同观测后,Follower的位置误差显著减少。此外,还讨论了实际应用中可能遇到的问题如通信延迟、数据丢失等,并提出了相应的解决方案。最后展望了未来的研究方向,如加入更多AUV形成观测闭环、改进通信协议等。 适合人群:从事水下机器人研究的技术人员、高校相关专业师生、对水下导航感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解水下机器人协同定位原理和技术实现的研究人员;旨在帮助读者掌握EKF在水下定位中的应用,提高多AUV系统的定位精度。 其他说明:文中提供了完整的MATLAB代码片段,便于读者动手实践;强调了理论与实践相结合的学习方式,鼓励读者尝试不同的参数配置以探索最佳性能。
2025-05-27 09:44:44 1.06MB MATLAB 传感器融合
1
欠驱动水下航行器UUV-AUV的MATLAB Simulink控制仿真完整指南:从源程序到六自由度模型运动学与动力学基础推导,深入探索:欠驱动水下航行器UUV-AUV轴向运动子系统的MATLAB Simulink控制仿真学习指南,欠驱动水下航行器uuv auv 轴向运动子系统MATLAB simulink控制仿真可参考学习,慢慢入手。 在MATLAB R2019b环境运行正常,新版本可往前兼容。 内容包括: 源程序.m文件、simulink模型、仿真结果图形.fig、运行说明.txt、以及自己整理的,水下航行器六自由度模型的运动学和动力学基础推导有关知识.PDF ,核心关键词如下: 欠驱动水下航行器UUV/AUV;轴向运动子系统;MATLAB Simulink控制仿真;源程序.m文件;simulink模型;仿真结果图形.fig;运行说明.txt;六自由度模型;运动学和动力学基础推导;PDF文档;MATLAB R2019b环境;新版本兼容。,水下航行器uuv_auv MATLAB Simulink控制仿真资料合集
2025-04-23 11:04:38 1.73MB
1
复现研究:基于NMPC的分布式轨迹跟踪控制算法在水下航行器中的应用与验证,复现研究:基于NMPC的分布式轨迹跟踪控制算法在水下航行器中的应用与验证,【复现】水下航行器(NMPC)非线性模型预测控制分布式轨迹跟踪 复现文献1: 《Distributed implementation of nonlinear model predictive control for AUV trajectory tracking》 复现文献2: 《Modified C GMRES Algorithm for Fast Nonlinear Model Predictive Tracking Control of AUVs》 1、利用水下机器人运动的动态特性,提出了一种新的分布式NMPC算法。 通过适当地将原始优化问题分解为更小的子问题,然后以分布式方式解决它们,可以显著减少预期的浮点操作(flops)。 2、证明了在分解子问题中所提出的收缩约束可以保证AUV轨迹的收敛性。 证明了该方法的递推可行性和闭环稳定性。 利用保证的稳定性,进一步开发了一种实时分布式实现算法,在控制性能和计算复杂度之间进行自动权衡。
2025-04-18 15:11:52 6.35MB xhtml
1
凉亭-auv-sim 远东联邦大学自主水下航行器的仿真工具。 ###依赖: CMake >= 2.8 提升 >= 1.49 包配置 凉亭 >= 1.9 protobuf >= 2.5.0 OpenCV >= 2.4(需要适配器) ###Building:与 Carnegie Mellon IPC 消息一起使用: export IPC_MSG_INCLUDE_DIR= < directory> 使用 make 构建: mkdir build cd build cmake ../ make install ###Usage:在构建目录中: gazebo robosub_auv.sdf 要与 FEFU AUV ipc 消息一起使用,您需要运行适配器: ./bin/adapter 查看适配器选项: ./bin/adapte
2023-06-27 00:38:55 263KB C++
1
基于Matlab_Simulink的水下航行器建模与仿真.pdf
2022-11-12 10:14:52 242KB
1
基于二维模型预测控制的无人水下航行器轨迹跟踪
2022-05-04 20:43:43 188KB 研究论文
1
为便于对水下航行器的运动弹道和运动控制进行计算机仿真,建立一种基于Matlab/Simulink 的水下航行器模型。利用矢量化建模方法,给出水下航行器6 自由度空间运动数学模型,详细论述Simulink 建模过程和S 函数的实现方法,并应用所建立的Simulink 模型,对水下航行器的开环运动、操纵性以及闭环运动控制相关问题进行仿真。仿真结果表明,该系统符合水下航行器的实际运动规律。
2022-03-12 19:14:30 261KB 工程技术 论文
1
采用一致性算法与虚拟结构法研究了多自主水下航行器(AUV)小尺度编队控制问题.首先针对各自主水下航行器拥有不同虚拟领航者信息(参考信息)的情况,通过对各AUV拥有的不一致参考信息进行一致性协商而达到状态一致.其次,基于虚拟结构思想采用坐标变换将各AUV相对于虚拟领航者的相对位置转换为各自的期望位置,并设计了一种有限时间跟踪控制律以确保各AUV能在有限时间内跟踪上其期望轨迹,从而实现了多AUV的小尺度?有限时间编队控制.最后仿真实验验证了控制策略的有效性.
2021-12-21 17:57:07 601KB 工程技术 论文
1
近年来,由于科学技术的进步和军事作战观念的变化,武器系统发生了巨大变化。 所有这些变更的核心是一个无人驾驶系统。 特别是在海洋环境下,由于作战的中心阶段已从海洋转移到沿海地区,现有海军很难在浅水区有效作战。 因此,无人驾驶水下航行器(UUV)的需求正在日益增长。 在本文中,我们分析了已经开发的UUV的特征,它们是未来海洋战场环境中的关键无人系统。 通过对开发案例的分析和对关键技术的研究,阐述了UUV的关键设计问题。 我们还根据案例分析提出UUV技术的未来方向。
1
此提交包含此视频中使用的有关自主水下车辆的建模、模拟和控制的文件 - https://www.mathworks.com/videos/modeling-and-simulation-of-an-autonomous-underwater-vehicle-1586937688878 .html 本次提交对 6-DoF 自主水下航行器 (AUV) 以及 AUV 的位置和速度控制器进行建模。 您可以根据应用需求在低保真度和高保真度传感器和环境模型之间切换。 Aerospace Blockset 用于对车辆的动力学进行建模。 要了解如何使用系统识别对推进器进行建模,请观看此视频 - https://www.mathworks.com/videos/matlab-and-simulink-robotics-arena-from-data-to-model-1518156121608.html
2021-09-26 17:12:50 136KB matlab
1