基于大数据技术构建的地铁客流智能分析系统——高效管理与决策支持平台,项目21:基于大数据技术的地铁客流量分析系统 简介: 本项目旨在利用Hadoop和Spark大数据技术,对海量地铁客流量数据进行高效管理和深入分析。 通过构建数据仓库,实现用户登录注册功能,并提供地铁站点数量、站点人数、闸机总客流量等实时查询服务。 项目将进行站点乘客数量漏斗分析,以识别客流流失环节;同时,分析不同站点及线路的流量峰值和占比,为地铁运营提供决策支持。 最终,通过可视化技术展示统计分析结果,为管理者提供直观、易懂的数据展现形式,助力提升地铁运营效率和服务质量。 hadoop+spark+mysql+mybatis+springboot+vue+echarts+hmtl+css ,基于所给信息,提取的核心关键词为: 大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析; 流量峰值分析; 决策支持; 可视化技术。 关键词以分号分隔为:大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析;
2025-11-18 23:02:15 495KB
1
2024年第九届全国密码技术竞赛中获得特等奖的作品《面向海量大数据的跨模态密文检索系统》是一套先进的技术方案,旨在解决海量大数据环境下的密文检索问题。在这项技术中,跨模态检索是指能够在不同数据模态之间进行检索的能力,而密文检索则涉及在数据被加密后进行有效检索的挑战。 跨模态密文检索系统的设计需要解决的是数据的安全性问题,因为大数据往往涉及敏感信息。因此,系统必须采用高效的加密技术,保证数据在存储和传输过程中的安全。同时,为了保证检索的效率,加密技术不能简单地损害数据的检索性能。这就要求设计一种既能保护数据隐私,又能支持高效检索的加密算法。 在实现这一目标的过程中,可能会涉及到多种先进的密码学方法和技术,如同态加密、安全多方计算、可搜索加密等。同态加密技术允许对加密数据直接进行计算,而不必解密,这对于保护数据隐私至关重要。安全多方计算则允许多个参与方共同参与计算,同时保证各自输入的隐私性。可搜索加密则允许用户在不解密的情况下,对加密数据进行搜索。 此外,跨模态密文检索系统还需要强大的索引技术。在数据被加密之后,传统的索引方法可能不再适用。因此,必须设计能够处理加密数据的索引结构,这可能涉及到特殊的索引构建算法和数据结构,如加密后的倒排索引、加密树结构等。 系统还要考虑到海量数据的存储和管理问题。在大数据环境下,数据的规模往往非常庞大,这就需要高效的存储方案,如分布式文件系统、云存储等。同时,还要有有效的数据管理策略,以便于数据的快速检索和访问。 在系统的设计中,还应当考虑到用户体验。如何在保证安全性和检索效率的同时,为用户提供直观易用的检索界面和功能,也是设计者需要重点考虑的问题。 跨模态密文检索系统是一个集成了多种先进密码学技术、索引技术、数据存储和管理策略以及用户体验设计的复杂系统。它的开发和应用不仅可以提升大数据环境下的信息安全水平,还可以为相关领域提供强有力的技术支持,推动信息检索技术的发展。 另外,从文件名称"Cross-Model-Encrypted-Search-System-main"可以看出,该压缩包内可能包含系统的主要文件和代码库。这些文件可能包括系统设计文档、源代码、测试案例、用户手册和运行指南等,这些是实现跨模态密文检索系统功能的重要组件。 这套系统将为大数据环境下的信息安全和检索效率提供全新的解决方案,具有重要的理论和实际应用价值。随着技术的不断进步和应用领域的扩大,这套系统有望在更多领域得到广泛应用,成为保护数据隐私和实现高效数据检索的重要工具。
2025-10-09 11:08:41 189.06MB
1
百度离线地图开发示例代码,可以打开map.html直接查看效果。 海量点图绘制、自定义弹窗、热力图功能、自定义区域绘制、画出实时运行轨迹,车头实时指向行驶方向,设置角度偏移。 对于百度地图的离线开发具有一定的参考价值。 代码简单明了,初学者一看便懂。 如有问题可咨询作者。
2025-09-16 15:47:23 57.38MB 百度离线地图 运行轨迹
1
在IT行业中,尤其是在数据库管理领域,Oracle数据库因其强大的功能、高度的可靠性和广泛的应用场景而备受青睐。然而,随着数据量的不断膨胀,如何优化Oracle数据库以适应海量数据的高效处理,成为了一项挑战性的任务。“让Oracle跑得更快2:基于海量数据的数据库设计与”这一主题,正是聚焦于解决这一问题,旨在通过合理的数据库设计和性能优化策略,提升Oracle在处理大规模数据集时的效率。 ### 一、海量数据处理 海量数据处理的核心在于高效的数据存储和快速的数据访问。对于Oracle数据库而言,这通常涉及到表空间设计、索引结构、分区策略以及数据压缩技术的应用。例如,合理地使用分区可以将大表分割成更小、更易管理的部分,从而加速查询速度;而采用合适的压缩算法,则可以在减少存储空间的同时,降低I/O操作的成本,进而提高整体性能。 ### 二、Oracle数据库设计 Oracle数据库设计是确保系统能够有效应对高负载和大数据的关键。这包括但不限于: 1. **表结构设计**:合理规划字段类型,避免冗余数据,确保数据的一致性和完整性。 2. **索引策略**:根据查询模式创建有效的索引,以加快查询速度。同时,需定期维护索引,防止其碎片化导致性能下降。 3. **分区与子分区**:对大数据量的表进行水平或垂直分区,可以显著提高查询性能。 4. **数据类型选择**:根据数据特性和应用需求,选择最合适的Oracle数据类型,如VARCHAR2、NUMBER等,以优化存储和检索效率。 5. **存储参数调优**:如设置合适的BUFFER_CACHE_SIZE、DB_CACHE_SIZE等参数,以优化内存使用。 ### 三、性能优化 性能优化是提升Oracle数据库处理能力的重要手段。这可以通过以下途径实现: 1. **SQL语句优化**:编写高效的SQL语句,避免全表扫描,利用EXPLAIN PLAN分析执行计划,调整SQL逻辑以减少不必要的磁盘I/O和CPU消耗。 2. **硬件资源优化**:增加RAM,使用更快的硬盘(如SSD),以及配置多核处理器,都是提升Oracle性能的有效方式。 3. **并发控制**:合理设置并发用户数,避免过多的锁竞争,通过使用事务隔离级别和锁定策略来平衡并发性和一致性。 4. **定期维护**:包括但不限于数据库的备份恢复、数据字典的更新、统计信息的收集等,这些都是保持数据库健康运行的必要工作。 “让Oracle跑得更快2:基于海量数据的数据库设计与”这一主题,深入探讨了如何在面对海量数据时,通过精心设计的数据库架构和持续的性能优化措施,使Oracle数据库能够更加高效、稳定地运行。这对于任何依赖Oracle数据库支持业务运营的企业而言,都具有重要的现实意义和实践价值。通过对上述知识点的掌握和应用,不仅可以提升数据库的处理能力,还能为企业节省成本,提升竞争力。
2025-08-24 11:51:18 33.2MB Oracle
1
海量数据库解决方案》将整体内容分为两部分: 第1部分中以影响数据读取效率的所有要素为类别,对其各自的概念、原理、 特征、应用准则,以及表的结构特征、多样化的索引类型、优化器的内部作用、优化器为各种结果制定的执行计划予以详细说明,并以对优化器的正确理解为基础,提出对执行计划和执行速度产生最大影响的索引构建战略方案; 第2部分中主要介绍提高数据读取效率的具体战略方案,在这部分中介绍与数据读取效率相关的局部范围扫描的原理和具体应用方法,以及对被认为是提高数据库使用效率基础的表连接的所有类型予以详细说明。   《海量数据库解决方案》系列丛书深受广大读者的喜爱已经长达10年之久,在被誉为“圣经”的同时,它已经变成了数据库用户不可或缺的必读书籍。作者竭力探求能够让it工作者在实际工作中轻松应用并掌控的巧妙方法,提供事半功倍的海量数据库解决之道。   《海量数据库解决方案》适合数据库开发人员和数据库管理员等阅读。 目录: 第1部分 影响数据读取的因素 第1章 数据的存储结构和特征1 1.1 表和索引分离型5 1.1.1 堆表的结构5 1.1.2 聚簇因子(cluster factor)10 1.1.3 影响读取的因素13 1.1.3.1 大范围数据读取的处理方案14 1.1.3.2 提高聚簇因子的手段17 1.2 索引组织表(index-organized table)19 1.2.1 堆表和索引组织表的比较19 1.2.2 索引组织表的结构和特征20 1.2.3 逻辑rowid和物理猜(physical guess)22 1.2.4 溢出区(overflow area)24 1.2.5 索引组织表的创建25 1.3 聚簇表26 1.3.1 聚簇表的概念27 1.3.2 单表聚簇29 1.3.3 复合表聚簇31 1.3.4 聚簇表的代价34 1.3.5 哈希聚簇39 .第2章 索引的类型和特征43 2.1 b-tree 索引44 2.1.1 b-tree 索引的结构44 2.1.2 b-tree 索引的应用47 2.1.3 反向键索引52 2.2 位图索引53 2.2.1 位图索引的形成背景54 2.2.2 位图索引的结构和特征55 2.2.3 位图索引的读取57 2.3 基于自定义的函数索引60 2.3.1 基于自定义的函数索引的概念和结构60 2.3.2 基于自定义函数索引的约束61 2.3.3 基于自定义函数索引的灵活运用64 第3章 sql的执行计划(explain plan)74 3.1 sql和优化器75 3.1.1 优化器的作用和人的作用77 3.1.2 优化器的类型80 3.1.2.1 基于规则的优化器82 3.1.2.2 基于成本的优化器86 3.1.2.3 优化器目标的选择93 3.1.2.4 执行计划的固定化方案97 3.1.2.5 优化器的局限103 3.1.3 优化器的最优化步骤106 3.1.4 查询语句的转换112 3.1.4.1 传递性规则113 3.1.4.2 视图合并(view merging)116 3.1.4.3 查看用户定义的绑定变量122 3.1.5 开发者的作用123 3.2 执行计划的类型126 3.2.1 扫描的基本类型126 3.2.1.1 全表扫描127 3.2.1.2 rowid扫描132 3.2.1.3 索引扫描133 3.2.1.4 b-tree聚簇读取(cluster access)138 3.2.1.5 哈希聚簇读取(hash cluster access)139 3.2.1.6 采样表扫描(sample table scan)140 3.2.2 表连接的执行计划143 3.2.2.1 嵌套循环连接(nested loops join)143 3.2.2.2 排序合并连接(sort merge join)146 3.2.2.3 哈希连接(hash join)148 3.2.2.4 半连接(semi join)149 3.2.2.5 笛卡儿连接151 3.2.2.6 外连接(outer join)154 3.2.2.7 索引连接159 3.2.3 其他运算方式的执行计划161 3.2.3.1 in-list迭代执行计划162 3.2.3.2 连锁执行计划163 3.2.3.3 远程执行计划165 3.2.3.4 排序操作执行计划168 3.2.3.5 集合操作执行计划171 3.2.3.6 count(stopkey)执行计划174 3.2.4 位图(bitmap)执行计划175 3.2.4.1 各种条件运算符的位图执行计划176 3.2.4.2 子查询执行计划182 3.2.4.3 与b-tree索引相结合的执行计划184 3.2.5 其他特殊处理的执行计划185 3.2.5.1 递归展开(recursive implosion)执行计划186 3.2.5.2 修改子查询执行计划191 3.2.5.3 特殊类型的执行计划193 3.3 执行计划的控制203 3.3.1 提示的活用准则204 3.3.2 使用提示实现最优化目标206 3.3.3 使用提示改变表连接顺序207 3.3.4 表连接方式选择过程中提示的使用208 3.3.5 并行操作中提示的使用209 3.3.6 数据读取方法选择中提示的使用211 3.3.7 查询转换(query transformation)过程中提示的使用214 3.3.8 其他提示216 第4章 构建索引的战略方案221 4.1 索引的选定准则222 4.1.1 不同类型表的索引应用准则223 4.1.2 离散度和损益分界点227 4.1.3 索引合并和组合索引的比较229 4.1.4 组合索引的特征232 4.1.5 组合索引中列序的决定准则239 4.1.6 索引选定步骤242 4.2 决定聚簇类型的准则263 4.2.1 全局性聚簇263 4.2.2 局部性聚簇265 4.2.3 单表聚簇266 4.2.4 单位聚簇大小的决定267 4.2.5 确保聚簇被使用的措施270 第2部分 最优化数据读取方案 第5章 局部范围扫描(partial range scan)274 5.1 局部范围扫描的概念276 5.2 局部范围扫描的应用原则281 5.2.1 局部范围扫描的条件281 5.2.2 不同优化器模式下的局部范围扫描284 5.3 提高局部范围扫描执行速度的原理285 5.4 向局部范围扫描引导的方法289 5.4.1 利用访问路径实现对sort的代替289 5.4.2 只使用索引的局部范围扫描292 5.4.3 min、max 的处理293 5.4.4 filter型局部范围扫描298 5.4.5 rownum的灵活运用300 5.4.6 利用嵌套视图的局部范围扫描306 5.4.7 利用函数的局部范围扫描308 5.4.8 利用查询语句二元化特性的局部范围扫描316 5.4.9 web留言板中的局部范围扫描318 第6章 表连接的最优化方案336 6.1 join和loop query的比较339 6.1.1 全部范围扫描方式下的比较341 6.1.2 局部范围扫描方式下的比较349 6.2 连接条件状态对表连接的影响351 6.2.1 连接条件正常353 6.2.2 连接条件一边异常358 6.2.3 连接条件两边异常361 6.3 各种表连接方式的特征及活用方案365 6.3.1 嵌套循环连接366 6.3.1.1 嵌套循环连接的基本概念367 6.3.1.2 嵌套循环连接顺序的决定370 6.3.2 排序合并连接379 6.3.3 嵌套循环连接和排序合并连接的比较383 6.3.4 哈希连接(hash join)387 6.3.4.1 in-memory哈希连接392 6.3.4.2 延迟哈希连接395 6.3.5 半连接(semi join)398 6.3.5.1 半连接的概念和特征399 6.3.5.2 半连接的执行计划401 6.3.6 星型(star)连接417 6.3.7 星变形(star transformation)连接425 6.3.8 位图连接索引436
2025-08-09 12:20:12 42.92MB Part_01
1
Steam Grabber 是一款可让您将所有屏幕截图从 Steam 下载到硬盘的应用程序。 该工具非常适合更换了 PC 或遭受硬盘崩溃的用户,该工具可立即将整个 Steam 屏幕截图集保存到 HD 中。
2025-07-08 03:14:53 375KB 开源软件
1
社交网络海量数据的分析与可视化,对于大数据的分析很有用
2025-05-15 23:30:11 9.41MB 社交网络数据
1
### 海量数据处理中基于数据划分的查询优化研究与实现 #### 一、引言 随着信息技术的快速发展,特别是互联网技术的普及,各种应用场景下的数据量急剧增长,形成了所谓的“海量数据”。这类数据通常具有以下几个特点:体积庞大、增长速度快、类型多样且复杂度高。面对如此规模的数据,传统的数据管理和查询方法已经难以满足需求,因此,如何高效地处理海量数据成为了一个重要的研究课题。 #### 二、海量数据处理背景与挑战 海量数据处理面临着诸多挑战,主要包括: - **存储成本**:大量的数据存储需要高昂的成本。 - **处理速度**:数据查询和处理的速度直接影响系统的响应时间。 - **可扩展性**:随着数据量的增长,系统需要具备良好的可扩展性以应对不断变化的需求。 - **查询性能**:如何在海量数据中快速定位所需信息,是提高用户体验的关键。 #### 三、查询优化方案比较与分析 1. **基于索引的查询优化**:通过建立索引来加快查询速度,适用于查询条件单一或固定的场景。 2. **基于分区的数据划分**:根据数据特征将其划分为多个子集,分别存储和管理,能够有效提升查询效率。 3. **基于统计信息的优化**:利用数据统计特性进行查询优化,如平均值、分布情况等,适用于数据分布较为均匀的情况。 4. **分布式查询优化**:利用多台服务器进行并行处理,适用于数据量极大且需要高速处理的场景。 每种方案都有其适用的场景和局限性,在实际应用中需要根据具体情况进行选择。 #### 四、基于数据划分的查询优化方法 针对海量数据的特点,本研究提出了一种基于数据划分的查询优化方法,该方法的核心思想是通过多个维度对数据进行划分,改变其存储处理方式,进而优化查询性能。具体步骤如下: 1. **数据预处理**:对原始数据进行清洗、标准化处理,确保数据质量。 2. **多维数据划分**:依据数据特征(如时间、地理位置等)进行多维度划分,形成多个子集。 3. **存储优化**:根据划分结果调整存储策略,如采用分布式存储、分区存储等方式。 4. **查询优化**:通过索引构建、并行查询等手段进一步提升查询效率。 这种方法的优势在于能够显著减少查询过程中需要扫描的数据量,从而大幅提高查询速度。 #### 五、并行查询服务的实现 在并行查询服务的实现上,本研究采用了CORBA(Common Object Request Broker Architecture,通用对象请求代理体系结构)作为中间件技术基础。通过并行查询服务的实现,不仅可以减少查询所需的时间,还能充分利用现有的软硬件资源,实现最高效的处理能力。 #### 六、性能分析与实验验证 为了验证基于多维数据划分的查询优化方法的有效性和可行性,本研究设计了一系列实验。实验结果表明,采用该方法后,查询效率得到了明显提升,特别是在大数据环境下,优势更为显著。此外,通过对不同数据规模、不同查询模式的对比测试,证明了该方法具有较好的适应性和扩展性。 #### 七、结论 基于数据划分的查询优化方法是一种有效解决海量数据处理中查询性能问题的技术方案。通过合理的数据划分和优化策略,不仅能够显著提升查询速度,还能有效降低系统整体的运行成本。未来的研究方向将进一步探索更高效的数据划分算法和技术,以应对日益增长的数据处理需求。
2025-03-25 12:29:20 4.89MB 海量数据处理 数据划分 查询优化
1
这是基于python爬虫技术编程写的全球外贸数据爬虫系统,实现全球海关、关单、外贸数据的爬取。框架采用python多线程技术+request+代理IP池,实现了每天几十亿家采购商供应商外贸和关单数据实时采集和更新。
1
对于小型企业而言,数据的存储和维护通常是一项耗资不小的工程。小型企业要想跟上数据飞快的增长速度,恐怕得耗费不少时间和金钱。为了帮助中小企业更好地对海量数据进行管理,昆腾近日发布了GoVault数据保护解决方案,这一解决方案可以删减冗余的备份数据,同时降低数据处理过程中的整体成本。
2024-03-23 03:01:32 151KB
1