1.本项目基于网络开源平台Face++ . API,与Python 网络爬虫技术相结合,实现自动爬取匹配脸型的发型模板作为造型参考,找到最适合用户的发型。项目结合了人脸分析和网络爬虫技术,为用户提供了一个个性化的发型推荐系统。用户可以根据他们的脸型和偏好来寻找最适合的发型,从而更好地满足他们的美容需求。这种项目在美容和时尚领域具有广泛的应用潜力。 2.项目运行环境:包括 Python 环境和Pycharm环境。 3.项目包括4个模块: Face++ . API调用、数据爬取、模型构建、用户界面设计。Face++ . API可检测并定位图片中的人脸,返回高精度的人脸框坐标,只要注册便可获取试用版的API Key,方便调用;通过Selenium+Chrome无头浏览器形式自动滚动爬取网络图片,通过Face++性别识别与脸型检测筛选出用发型模板,图片自动存储指定位置并按性别、脸型序号形式命名。模型构建包括库函数调用、模拟用户面部图片并设定路径、人脸融合。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/132868949
2025-10-31 14:12:44 112.24MB face++ 图像识别 图像处理 人脸识别
1
2025电赛基于航空大数据的航班延误预测与航线优化系统_航班数据采集_航班延误分析_航线规划_航空公司运营优化_旅客出行建议_实时航班监控_历史数据分析_机器学习预测模型_深度学习算法_大数据.zip 航空运输业作为全球交通系统的重要组成部分,近年来在大数据技术的推动下,已经实现了从传统运营方式向智能运营方式的转变。在此过程中,航班延误预测与航线优化系统成为了研究热点,它们通过分析历史数据与实时数据,不仅为航空公司提供运营优化建议,也为旅客提供了更合理的出行方案。 该系统的核心在于通过大数据技术进行航班数据的采集与处理。数据来源包括但不限于飞行器通讯寻址与报告系统(ACARS)、飞机通信寻址与报告系统(ADS-B)、飞行管理系统(FMS)和多种在线数据服务。这些数据被整理并录入到中心数据库中,为后续的数据分析提供原始素材。 在航班延误分析方面,系统通常会利用历史数据分析和机器学习预测模型来识别导致延误的常见原因,如天气条件、技术故障、空中交通控制和机场容量等。通过应用深度学习算法,系统能够学习并识别出数据中的复杂模式,并提高预测的准确性。这些模型可进行实时监控和历史数据分析,以此来判断某次航班延误的可能性,并给出预测结果。 航线规划是该系统的重要组成部分,它涉及到根据历史数据和当前航班状态对航线进行优化。系统会综合考虑飞行效率、成本、乘客满意度等因素,通过优化算法对航线进行调整,以减少航班延误,提高航班正点率和整体运营效率。 航空公司运营优化是系统的目标之一。通过对航班延误的深入分析,航空公司能够制定出更加合理的航班计划和应对策略,减少因延误造成的损失,提高服务质量。同时,实时航班监控功能使得航空公司能够快速响应航班运行中的各种状况,确保航班安全、高效地运行。 对于旅客出行建议而言,系统能够根据航班的实时状态和预测信息,为旅客提供最合适的出行计划。这不仅能够帮助旅客避免不必要的等待和转机,还能够提升他们的出行体验。 整个系统的设计和实施涉及到多种技术手段和方法,其中机器学习和深度学习是核心技术。机器学习模型通过不断地训练和学习,能够对复杂的数据集进行有效的分析和预测。而深度学习算法更是通过模拟人脑神经网络,能够处理和识别数据中的高级特征,为航班延误预测提供更深层次的见解。 最终,航班延误预测与航线优化系统将大数据技术、机器学习和深度学习算法有机结合,为航空业提供了一套全面的解决方案。这不仅有助于提升航空公司的运营效率和服务水平,也能够为旅客提供更加便捷和舒适的出行体验。
2025-10-16 14:53:16 4.65MB python
1
本项目是一个基于深度学习算法的农作物病虫害智能检测系统,采用YOLOV11目标检测算法为核心,结合PyTorch深度学习框架,构建了包含前端展示、后端服务和数据库管理的完整解决方案。系统支持YOLOV1至YOLOV11全系列模型,可实现图片、视频和实时摄像头三种方式的农作物病害检测。 系统主要针对四大类经济作物进行病虫害识别:玉米可检测疫病、普通锈病、灰斑病等4种状态;水稻可识别褐斑病、稻瘟病等3种病害;草莓支持角斑病、炭疽果腐病等7种病症检测;西红柿则可识别早疫病、晚疫病等9种病虫害类型。该系统可广泛应用于农业生产中的病虫害监测、预警和防治工作。 深度学习基于YOLOv11农作物病虫害检测识别系统,融合Pytorch、Flask、SpringBoot、Vue、MySQL等先进技术。识别玉米、水稻、草莓和西红柿的常见病虫害,为农业病虫害的分析、预防和管理提供智能解决方案。 解压密码见:https://blog.csdn.net/AnChenliang_1002/article/details/149398678?spm=1011.2415.3001.5331
2025-10-11 20:50:54 303.44MB yolo vue springboot mysql
1
深度学习(DL,Deep Learning)是计算机科学机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标-人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。  深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果 【深度学习】 深度学习是机器学习领域的一个重要分支,其核心在于构建深层次的神经网络模型,模拟人脑的学习过程,以实现对复杂数据的高效处理和理解。它旨在通过多层非线性变换,自动从原始数据中提取特征,从而解决模式识别、图像识别、语音识别等挑战性问题。 【卷积神经网络(CNN)】 卷积神经网络是深度学习中的关键架构,特别适合处理图像数据。CNN由卷积层、池化层、全连接层等组成,其中卷积层通过滤波器(或称卷积核)对输入图像进行扫描,提取特征;池化层则用于降低数据维度,减少计算量,同时保持关键信息;全连接层将前面层提取的特征进行分类决策。 【深度学习的应用】 1. **图像识别**:深度学习,尤其是CNN,已经在图像识别任务中取得了显著成就,如图像分类、物体检测、人脸识别等。 2. **语音识别**:深度学习可以用于语音信号的处理和识别,提高语音识别的准确率。 3. **自然语言处理**:在文本理解、语义分析、机器翻译等领域,深度学习通过词嵌入和循环神经网络等技术推动了显著的进步。 4. **推荐系统**:结合用户行为数据,深度学习可以生成个性化推荐,提高用户体验。 5. **自动驾驶**:在交通标志识别、车辆检测等自动驾驶的关键环节,CNN发挥了重要作用。 【本文主要贡献】 1. **改进LeNet-5模型**:通过对LeNet-5经典模型的扩展和调整,构建了不同结构的卷积神经网络模型,用于光学字符识别(OCR),分析比较不同模型的性能。 2. **多列卷积神经网络**:借鉴Adaboost的思想,设计了一种多列CNN模型,用于交通标志识别(TSR)。通过预处理数据和训练,提高了识别准确率。 3. **实验验证**:通过实验证明了CNN在手写数字识别和交通标志识别问题上的有效性,并与其他分类器进行了比较,评估了CNN在实际应用中的性能优势。 【总结】 深度学习和卷积神经网络的结合为解决复杂的人工智能问题提供了强大工具,从图像识别到自然语言理解,再到语音处理,都有广泛应用。本文通过构建和优化CNN模型,展示了其在光学字符识别和交通标志识别中的高效表现,进一步巩固了深度学习在这些领域的地位。随着技术的不断发展,深度学习和CNN在更多领域的潜力将持续被发掘,为人工智能的进步贡献力量。
2025-05-08 00:15:52 5.99MB 人工智能 深度学习 毕业设计
1
1.本项目以科大讯飞提供的数据集为基础,通过特征筛选和提取的过程,选用WaveNet模型进行训练。旨在通过语音的梅尔频率倒谱系数(MFCC)特征,建立方言和相应类别之间的映射关系,解决方言分类问题。 2.项目运行环境包括:Python环境、TensorFlow环境、JupyterNotebook环境、PyCharm环境。 3.项目包括4个模块:数据预处理、模型构建、模型训练及保存、模型生成。数据集网址为:challenge.xfyun.cn,向用户免费提供了3种方言(长沙话、南昌话、上海话),每种方言包括30人,每人200条数据,共计18000条训练数据,以及10人、每人50条,共计1500条验证数据;WaveNet模型是一种序列生成器,用于语音建模,在语音合成的声学建模中,可以直接学习采样值序列的映射,通过先前的信号序列预测下一个时刻点值的深度神经网络模型,具有自回归的特点;通过Adam()方法进行梯度下降,动态调整每个参数的学习率,进行模型参数优化 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/134832627
2025-01-13 20:25:03 16.4MB tensorflow python 深度学习 语音识别
1
1.本项目以相关平台音乐数据为基础,以协同过滤和内容推荐算法为依据,实现为不同用户分别推荐音乐的功能。 2.项目运行环境:包括 Python 环境、MySQL 环境和 VUE 环境。需要安装的依頼包为: Django 2.1、PyMySQL 0.9.2、jieba 0.39、xlrd 1.1.0、gensim 3.6.0 3.项目包括4个模块:数据请求及存储、数据处理、数据存储与后台、数据展示。其中数据处理部分包含计算歌曲、歌手、用户相似度和计算用户推荐集。数据存储与后台部分主要在PyCharm中创建新的Django项目及5个模板,即主页、歌单、歌手、歌曲和用户。前端实现的功能包括:用户登录和选择偏好歌曲、歌手;为你推荐(用户行为不同,推荐也不同) ;进入各页面时基于内容的推荐算法为用户推荐歌单,协同过滤算法为用户推荐歌曲、歌手;单击时获取详细信息,提供单个歌单、歌曲、歌手、用户的推荐;个性化排行榜(将相似度由大到小排序);我的足迹。 4.项目博客: https://blog.csdn.net/qq_31136513/article/details/132335950
2024-06-20 19:08:27 229.93MB mysql vue.js django 推荐算法
1.本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。 2.项目运行环境包括:Python 环境、Anaconda环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像;模型构建包括VGG模型和GoogLeNet模型简化版深度学习模型,MiniGoogLeNet由Inception模块、Downsample模块和卷积模块组成,卷积模块包括卷积层、激活函数和批量归一化;通过随机旋转等方法进行数据增强,选用Adam算法作为优化算法,随着迭代的次数增加降低学习速率,经过尝试,速率设为0.001时效果最好。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/135080491
2024-04-11 12:51:19 32.13MB 深度学习 python 图像识别 目标检测
1
使用Python的动手深度学习算法 这是Packt发布的《 的代码库。 通过使用TensorFlow实施深度学习算法和广泛的数学知识 这本书是关于什么的? 深度学习是AI领域最受欢迎的领域之一,可让您开发各种复杂程度不同的多层模型。 本书涵盖以下激动人心的功能: 实施基础到高级的深度学习算法 掌握深度学习算法背后的数学 熟悉梯度下降及其变体,例如AMSGrad,AdaDelta,Adam和Nadam 实施循环网络,例如RNN,LSTM,GRU和seq2seq模型 了解机器如何使用CNN和胶囊网络解释图像 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 该代码将如下所示: J_plus = forward_prop(x, weights_plus) J_minus = forward_prop(x, weights_minus) 这是您需要的本
2024-04-10 09:45:51 127.09MB python machine-learning deep-learning
1
资源包含Yolov3和Yolov5的可运行的源代码,YOLOv3代码部分包含三个部分:Backbone,PANet,Yolo Head,而Yolov5代码部分包含骨干网络 Focus、BottleneckCSP 和 SSP 网络构成,其中主要包括 Focus、Conv 卷积块、BottleneckCSP 和 SSP 等模块。可以用于后续的训练和模型搭建。
2023-12-07 13:26:39 911.5MB python Yolov5 Yolov3 深度学习算法
1
蜜蜂CNN模糊进化深度学习算法(人脸识别,智能优化算法,MATLAB源码分享) 在训练阶段之后,可以使用进化算法拟合深度学习权重和偏差。 这里,CNN用于对8个人脸类别进行分类。 在CNN训练之后,创建初始模糊模型以帮助学习过程。 最后,CNN网络权重(来自全连接层)使用蜜蜂算法训练,以自然启发的方式进行拟合(这里是蜜蜂的行为)。 可以将数据与任意数量的样本和类一起使用。 请记住,代码的参数是根据数据进行调整的,如果要替换数据,可能需要更改参数。 图像数据大小为64*64,2维,存储在“CNNDat”文件夹中。 因此,重要的参数如下: “numTrainFiles”=您必须根据每个类中的样本数量来更改它。 例如,如果每个类有120个样本,那么90个就足够好了,因为90个样本用于训练,而其他样本用于测试。 “imageInputLayer”=图像数据的大小,如[64 64 1] “fullyConnectedLayer(完全连接层)”=类的数量,如(8) “MaxEpochs”=越多越好,计算运行时间越长,如405。 “ClusNum”=模糊C均值(FCM)聚类数,如3或4很好
2023-11-04 15:30:57 485KB 深度学习 matlab
1