资料涵盖hbu理论课学习课件、期末个人精心整理的学习笔记、其他ai扩展读物等,hbu人工智能的的友友们可以下载用于期末复习【个人nndl期末成绩94】,没有vip的可以私聊我 邮箱3328133482@qq.com【没回复就是没看到啦`~~】 邱锡鹏是一位在深度学习领域内具有显著学术贡献的研究者,其整理的学习资料被广泛地应用于教育和自学中。本次分享的深度学习学习资料内容丰富,不仅包含了针对hbu(假设为某个特定课程或大学的缩写)理论课的专业课件,而且还囊括了邱锡鹏本人在期末考试中取得高分(94分)的个人学习笔记。这些笔记无疑是经过精心整理的,具有很高的参考价值,特别是对于那些希望提高学习成绩,尤其是在人工智能领域期末复习的学者和学生。 除了课堂学习资料和个人笔记之外,该压缩包还包括了其他与人工智能相关的扩展读物。这些扩展读物能够帮助学习者拓宽知识视野,加深对深度学习理论和技术的理解。从文件的命名来看,“深度学习”一词作为关键标签,突出了资料的核心主题和学科方向,表明资料的专一性和深入性。 这份资料的分享者还特别提到,这份资料对于没有VIP权限的使用者同样开放,表现出分享者慷慨共享知识的态度。分享者还在描述中留下了自己的邮箱,便于有需要的学习者进行联系,以获取更多帮助或资源。不过,他也提醒大家,如果邮件没有得到回复,可能是因为他暂时没有查看到邮件。 邱锡鹏提供的这份深度学习学习资料是一套非常适合人工智能领域学生和自学者的综合学习资源。它不仅涵盖了专业的课程学习内容,还有助于学习者通过高质量的个人学习笔记进行深入学习和复习,同时也包含了额外的阅读材料以供扩展知识。这份资料的共享无疑对促进深度学习知识的普及和提升该领域学习者的专业水平有着积极的影响。
2025-12-21 11:09:30 175.12MB 深度学习
1
内容概要:本文研究基于深度强化学习的多无人机辅助边缘计算网络路径规划,旨在通过深度强化学习技术优化多无人机在复杂环境下的飞行路径,以提升边缘计算网络的服务效率与资源利用率。文中结合Matlab代码实现,详细探讨了多无人机协同工作的路径规划模型,涵盖任务分配、避障、能耗优化等关键问题,有效支持边缘计算场景下的低延迟、高可靠通信需求。; 适合人群:具备一定编程基础和无人机、边缘计算或强化学习背景的科研人员及研究生;适用于从事智能优化、路径规划或网络资源调度相关方向的研究者。; 【无人机路径规划】基于深度强化学习的多无人机辅助边缘计算网络路径规划(Matlab代码实现) 使用场景及目标:①解决多无人机在动态环境中高效执行边缘计算任务的路径规划问题;②探索深度强化学习在复杂多智能体系统协同控制中的实际应用;③为边缘计算网络提供低延迟、高稳定性的无人机辅助通信方案。; 阅读建议:建议结合提供的Matlab代码进行实践,重点关注算法模型的设计思路与仿真实验设置,深入理解深度强化学习在路径规划中的训练机制与优化策略。
1
【1】该资源属于项目论文,非项目源码,如需项目源码,请私信沟通,不Free。 【2】论文内容饱满,可读性强,逻辑紧密,用语专业严谨,适合对该领域的初学者、工程师、在校师生等下载使用。 【3】文章适合学习借鉴,为您的项目开发或写作提供专业知识介绍及思路,不推荐完全照抄。 【4】毕业设计、课程设计可参考借鉴! 重点:鼓励大家下载后仔细研读学习,多看、多思考!
2025-12-14 19:08:29 5.36MB 毕设论文 课程论文 学习资源 课程设计
1
本书系统介绍深度强化学习的核心理论与实践方法,涵盖价值-based、策略-based和模型-based学习,深入探讨多智能体、分层与元学习等前沿主题。结合Python代码实例与经典算法,帮助读者从基础到进阶全面掌握强化学习技术。配套网站提供课件、代码与练习资源,适合研究生与研究人员自学或教学使用。 深度强化学习是人工智能领域的一个重要分支,它将深度学习与强化学习相结合,通过智能体与环境的交互学习来实现最优决策。深度强化学习在游戏、机器人控制、自动驾驶等众多领域都取得了突破性进展。 价值基础、策略基础和模型基础学习是深度强化学习的三大主要学习方式。价值基础学习侧重于学习状态的价值函数或状态-动作对的价值函数,以此评估每个动作的期望回报。策略基础学习则直接学习一个策略,即从状态到动作的映射。模型基础学习则关注学习环境的模型,这个模型可以用来预测未来状态或未来奖励。 多智能体、分层和元学习是深度强化学习中的一些前沿主题。多智能体学习涉及多个智能体在环境中相互作用,并学习如何协调或竞争。分层学习是通过分解复杂任务为更小的子任务,并学习不同层次的策略来解决更复杂问题的一种方法。元学习是一种学习如何学习的技术,它使智能体能够快速适应新环境或任务。 Python由于其简洁性和强大的库支持,成为深度强化学习实现和实验的首选语言。在本书中,作者提供了Python代码实例和经典算法,帮助读者更直观地理解和实现深度强化学习。此外,配合网站提供的课件、代码和练习资源,读者可以通过实践加深对深度强化学习的理解。 深度强化学习入门与实践适合研究生和研究人员自学或教学使用。它不仅为初学者提供了学习深度强化学习的基础知识,同时也为进阶学习者提供了深入了解前沿主题的途径。本书的内容深度与广度兼备,系统全面地介绍了深度强化学习的相关理论和实践技巧,使其成为该领域的实用学习资源。 本书的内容结构清晰,从基础概念的介绍开始,逐步深入到高级话题,确保读者能够逐步建立深度强化学习的知识体系。每一章节都紧密联系理论与实践,通过代码实例来强化理论知识的理解。书中的理论介绍和算法分析都紧密结合实际应用,使读者能够在实践中发现和解决问题。 通过对这本书的学习,读者将能够掌握深度强化学习的关键技术,并在实际问题中应用这些技术,从而在自己的研究或工作中实现突破和创新。同时,本书的资源和实例将帮助读者构建一个坚实的基础,以便在人工智能领域中不断探索和前进。由于深度强化学习是目前人工智能研究的热点,本书的出版无疑对于推动相关领域的学术进步和实践发展具有重要意义。
2025-11-06 19:44:37 18.64MB 深度学习 强化学习 人工智能
1
内容概要:本文详细介绍了基于混合整数线性规划(MILP)和双延迟深度确定性策略梯度(TD3)的用户侧储能系统优化运行策略。该策略旨在解决深度强化学习在储能控制中难以严格满足运行约束的问题。通过MILP确保动作的可行性,利用TD3进行优化决策,研究建立了考虑电池退化成本的运行优化模型。文章提供了详细的代码实现,包括环境建模、MILP求解器、TD3算法、增强型MILP求解器、完整训练流程、性能对比分析以及实时调度测试。此外,还深入分析了核心创新点,如约束处理机制和成本优化,并展示了算法的完整实现过程。 适合人群:具备一定编程基础,对储能系统优化、深度强化学习和混合整数线性规划感兴趣的科研人员和工程师。 使用场景及目标:①研究和开发用户侧储能系统的优化运行策略;②理解和应用MILP和TD3结合的技术来提升储能系统的运行效率和降低成本;③评估不同算法(如TD3和MILP-TD3)在储能控制中的性能差异。 其他说明:本文不仅提供了理论分析,还给出了详细的代码实现,便于读者复现实验结果。文中强调了关键实现细节,如电池退化成本模型、严格的约束处理机制以及完整的性能评估指标。通过这些内容,读者可以深入了解并实践基于MILP-TD3的储能系统优化方法。
2025-11-03 18:29:56 58KB 深度强化学习 储能系统 优化调度
1
基于深度强化学习(DRL)的DQN路径规划算法及其在MATLAB中的实现。DQN算法结合了深度学习和强化学习,能够在复杂的状态和动作空间中找到最优路径。文中不仅提供了完整的MATLAB代码实现,还包括了详细的代码注释和交互式可视化界面,使用户能直观地观察和理解算法的学习过程。此外,代码支持自定义地图,便于不同应用场景的需求。 适合人群:对深度强化学习感兴趣的研究人员和技术爱好者,尤其是希望深入了解DQN算法及其实际应用的人群。 使用场景及目标:适用于研究和开发智能路径规划系统,特别是在机器人导航、自动驾驶等领域。通过学习本文提供的代码和理论,读者可以掌握DQN算法的工作原理,并将其应用于各种迷宫求解和其他路径规划任务。 其他说明:为了确保算法的有效性和稳定性,文中提到了一些关键点,如网络结构的选择、超参数的优化、环境建模和奖励函数的设计等。这些因素对于提高算法性能至关重要,因此在实际应用中需要特别注意。
2025-10-29 21:18:17 480KB
1
# 基于深度强化学习的股票交易策略项目——DQN交易系统 ## 项目简介 本项目是一个基于深度强化学习(DQN)的自动股票交易策略系统。该系统旨在通过强化学习算法训练一个智能代理,使其能够自动进行股票交易决策,包括买入和卖出动作。本项目主要包含四个文件main.py、model.py、dqnagent.py和StockExchange.py。 ## 主要特性与功能 1. DQN代理实现通过dqnagent.py实现了深度强化学习中的DQN代理,包括本地和目标Q网络的定义、经验的存储与回放机制以及软更新策略。 2. 股票交易模拟环境通过StockExchange.py模拟股票交易环境,包括数据的读取、状态的获取、交易动作的决策以及结果的测试与可视化。 3. 训练与测试通过main.py作为主程序,实现代理的训练、测试以及结果的展示。 ## 安装与使用 ### 依赖项 Python(推荐版本Python 3.7+)
2025-10-10 22:42:05 929KB
1
基于深度强化学习算法的电力市场决策建模:DDPG策略在发电商竞价中的应用研究,基于深度强化学习算法的电力市场竞价策略建模程序代码研究——深度探索DDPG在发电商竞价决策中的应用,基于Agent的电力市场深度决策梯度(深度强化学习)算法建模程序代码 基于DDPG(深度确定性梯度策略)算法的电公司竞价策略研究 关键词:DDPG 算法 深度强化学习 电力市场 发电商 竞价 ,DDPG算法;深度强化学习;电力市场;发电商;竞价,基于DDPG算法的电力市场深度决策建模程序代码 在电力市场中,竞价策略对发电商的利润和市场的整体效率具有重要影响。近年来,随着深度强化学习算法的发展,发电商竞价策略的研究进入了一个新的阶段。深度强化学习算法,尤其是深度确定性梯度策略(DDPG),在处理连续动作空间的复杂决策问题时表现出了独特的优势。本研究旨在探讨DDPG策略在电力市场发电商竞价中的应用,通过构建基于DDPG的竞价模型,实现在动态变化的电力市场环境下,发电商的最优竞价策略。 深度强化学习结合了深度学习和强化学习的优点,能够处理高维状态空间和动作空间的决策问题。在电力市场中,发电商需要根据市场的实时供需情况、竞争对手的行为、成本信息等多维信息做出决策,这为深度强化学习提供了良好的应用场景。DDPG算法通过使用深度神经网络来近似策略函数和价值函数,能够处理连续动作空间,并通过与环境的交互来学习最优策略。 在电力市场竞价模型中,发电商需要决定在每个时段提供多少电能以及相应的报价。一个有效的竞价策略能够帮助发电商在满足市场需求的同时最大化其利润。DDPG算法通过构建一个智能体(Agent),使其在与电力市场环境的交互中学习到最优的竞价策略。智能体通过经验回放和目标网络技术来稳定学习过程,并采用actor-critic架构来平衡探索和利用。 研究中,发电商的竞价模型考虑了市场电价的波动、发电商的成本结构、竞争对手行为等因素,通过模拟电力市场环境的动态变化,评估DDPG算法在不同场景下的性能。实验结果表明,基于DDPG算法的竞价策略能够在复杂的市场环境下实现高效的资源分配和利润最大化。 此外,本研究还对DDPG算法在电力市场竞价中的应用进行了深入的分析,探讨了算法参数的调整对策略性能的影响,以及如何提高算法的稳定性和收敛速度。研究成果不仅为发电商提供了一种新的竞价策略设计方法,也对电力市场运营机构和监管机构提供了决策支持,帮助其更好地理解和预测市场参与者的行为。 研究成果的文档包括了对DDPG算法理论基础的介绍、电力市场竞价环境的建模、算法实现的具体步骤、实验设计和结果分析等部分。此外,还提供了相关程序代码的实现细节,为其他研究者或实际操作者提供了可复现的研究成果和实践指导。 电力市场竞价模型和策略的研究对于提升电力市场运行效率、促进清洁能源的消纳、保障电力系统的稳定运行具有重要意义。随着深度强化学习技术的不断进步,未来在电力市场中的应用前景将更加广阔,值得进一步深入探索。
2025-09-24 14:31:12 1.81MB xhtml
1
深度强化学习是一门将深度学习与强化学习结合起来的跨学科领域,其主要思想是通过深度神经网络来近似处理强化学习中的函数逼近问题,从而能够处理具有高维状态和动作空间的复杂任务。强化学习的核心思想是通过智能体(Agent)与环境(Environment)的交互来学习策略(Policy),即智能体根据当前状态决定采取哪种动作以最大化累计奖励(Cumulative Reward)。深度强化学习在近年来取得了显著的成功,尤其是在游戏、机器人、自然语言处理、计算机视觉等领域。 在深度强化学习中,有几个核心元素是至关重要的,包括价值函数(Value Function)、策略(Policy)、奖励(Reward)、模型(Model)、规划(Planning)和探索(Exploration)。价值函数主要用于评价在给定状态或状态下采取某一动作的长期收益;策略则是智能体遵循的规则,它决定了智能体在某个状态下应该采取哪个动作;奖励函数用来衡量智能体的行为,是强化学习中的关键反馈信号;模型是指智能体对环境的内部表示,它能够预测环境的未来状态;规划是指在已知模型的情况下,智能体如何通过预测和推理来选择最优行为;探索则是智能体用来发现新知识的过程,它帮助智能体跳出局部最优,以寻找可能的全局最优策略。 除了核心元素,深度强化学习还包含一些重要的机制,这些机制在提升智能体学习效率和性能方面起着关键作用。注意力和记忆(Attention and Memory)机制让智能体能够聚焦于环境中最重要的信息,并记住历史信息以辅助决策;无监督学习(Unsupervised Learning)可以用来预训练深度网络或作为辅助学习任务来增强学习效率;迁移学习(Transfer Learning)能够让智能体将在一个任务上学习到的知识迁移到其他任务上;多智能体强化学习(Multi-Agent RL)则研究多个智能体之间如何互动和协作;层次强化学习(Hierarchical RL)涉及将复杂任务分解为子任务,从而简化学习过程;学习如何学习(Learning to Learn)使得智能体能够改进其学习过程本身,提高学习速度和泛化能力。 深度强化学习的应用领域非常广泛,包括但不限于以下方面: 1. 游戏:AlphaGo是最著名的应用之一,它通过深度强化学习在围棋领域打败了世界冠军。 2. 机器人:机器人通过深度强化学习可以学会完成复杂的任务,比如操作物体、导航等。 3. 自然语言处理:通过深度强化学习,对话系统、机器翻译和文本生成等任务可以实现更自然和有效的交互。 4. 计算机视觉:深度强化学习可以帮助智能体识别和理解视觉信息,完成分类、检测和分割等任务。 5. 神经架构设计:深度强化学习被用于自动设计高效的神经网络架构。 6. 商业管理、金融、医疗、工业4.0、智能电网、智能交通系统、计算机系统等领域:深度强化学习同样可以应用在这些领域中,提高效率和性能。 深度强化学习是当前人工智能研究中极为活跃的前沿领域之一,它的进步不仅推动了理论的发展,更带动了实际应用的革新。随着深度学习和强化学习的理论与技术的不断发展,深度强化学习的研究和应用前景将更加广阔。
2025-07-03 17:40:37 653KB 强化学习
1
作为人工智能领域的热门研究问题,深度强化学习自提出以来,就受到人们越来越多的关注。目前,深度强化学 习能够解决很多以前难以解决的问题,比如直接从原始像素中学习如何玩视频游戏和针对机器人问题学习控制策略,深度强 化学习通过不断优化控制策略,建立一个对视觉世界有更高层次理解的自治系统。其中,基于值函数和策略梯度的深度强化 学习是核心的基础方法和研究重点。本文对这两类深度强化学习方法进行了系统的阐述和总结,包括用到的求解算法和网络 结构。首先,概述了基于值函数的深度强化学习方法,包括开山鼻祖深度Q 网络和基于深度Q 网络的各种改进方法。然后 介绍了策略梯度的概念和常见算法,并概述了深度确定性策略梯度 深度强化学习(Deep Reinforcement Learning, DRL)是人工智能领域中的一个重要分支,它结合了深度学习的表征能力与强化学习的决策制定机制。本文由刘建伟、高峰和罗雄麟共同撰写,深入探讨了基于值函数和策略梯度的DRL方法。 一、基于值函数的深度强化学习 值函数在强化学习中用于评估状态的价值或策略的期望回报。深度Q网络(Deep Q-Network, DQN)是这一领域的里程碑式工作,它解决了传统Q学习的两个关键问题:经验回放缓存(experience replay)和固定目标网络(fixed target network)。DQN通过神经网络学习状态动作值函数Q(s, a),并使用贝尔曼最优方程进行更新。随后出现了许多DQN的变体,如Double DQN、 Dueling DQN等,旨在减少过估计,提高学习稳定性。 二、策略梯度方法 策略梯度是另一种强化学习策略,它直接优化策略参数,以最大化期望回报。这种方法的优点是可以处理连续动作空间。文章介绍了策略梯度的基本概念,并讨论了如REINFORCE算法。此外,还提到了深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法,它适用于连续动作空间的问题,通过引入actor-critic结构和经验回放缓存来稳定学习过程。 三、其他深度强化学习方法 除了DQN和DDPG,文章还提及了信赖域策略优化(TRUST Region Policy Optimization, TRPO)和异步优势演员评论家(Accelerated Advantage Actor-Critic, A3C)等策略梯度的变种。TRPO通过约束策略更新的幅度,保证了策略的稳定性,而A3C则利用多线程异步更新,提高了学习速度。 四、前沿进展:AlphaGo与AlphaZero AlphaGo是谷歌DeepMind团队开发的围棋AI,它通过深度学习和蒙特卡洛树搜索结合,击败了世界冠军。AlphaZero是AlphaGo的升级版,不再依赖人类知识,仅通过自我对弈就能掌握多种棋类游戏的顶尖水平。AlphaZero的成功表明,基于深度强化学习的方法可以实现通用的游戏策略学习。 五、未来展望 随着技术的发展,深度强化学习的应用将更加广泛,如机器人控制、自动驾驶、资源调度等领域。未来的研究方向可能包括更高效的算法设计、更好的泛化能力、以及处理高维度和连续状态/动作空间的能力。同时,解决现实世界中的延迟问题、探索环境不确定性以及提高学习效率也是重要的研究课题。 总结,深度强化学习通过值函数和策略梯度方法,实现了从原始输入数据中自动学习高级行为的突破。这些方法的不断发展和完善,不仅推动了人工智能的进步,也为实际问题的解决提供了强大的工具。
2025-06-26 11:02:08 1.35MB 深度学习 强化学习 深度强化学习
1