在电力电子技术飞速发展的当下,磁性元件作为功率变换器中的关键部分,其性能直接决定了系统的效率、功率密度与可靠性。特别是磁芯损耗,在高频高效的应用中占有相当比重。准确评估磁芯损耗,对优化设计和提升转换效率至关重要。本文采用实验数据和数学建模相结合的方法,构建了磁芯损耗的预测模型。 针对不同励磁波形的精确识别问题,利用四种磁芯材料的数据集,分析了磁通密度波形的时域特征,并进行傅里叶变换至频域提取谐波。运用FNN构建MLP模型,用前八个谐波负值作为特征数据进行训练,但效果不佳。随后,采用信号处理与机器学习结合的THD-MLP模型,准确率达到了100%,并成功预测了数据。 研究了温度对磁芯损耗的影响,对同一种材料在不同温度下的损耗数据进行预处理和初步分析,结合斯坦麦茨方程,通过最小二乘回归拟合得到了修正后的损耗方程。该方程预测效果良好,相关系数达到0.997678,RMSE为11822.8。 再者,为探究温度、励磁波形和磁芯材料对损耗的综合影响,首先对数据进行分类和特征提取,构建了磁损值与这些因素的多项式模型,并用最小二乘法拟合获得最佳参数。通过枚举法找到了最小磁损值对应的条件,预测在特定条件下的最小磁芯损耗。 在分析了温度、励磁波形和材料对磁芯损耗的独立及协同影响后,发现传统回归方法在处理复杂非线性关系时存在局限,预测精度不足。因此,将最小二乘回归结果作为新特征,与MLP结合进行非线性回归建模,引入对数变换处理损耗数据,最终得到与真实数据高度相关的预测结果。 为计算最小磁芯损耗和传输磁能最大时的条件值,构建了基于预测模型的目标函数,并转化为最小值问题。利用遗传算法进行求解,确定了磁芯损耗和传输磁能的最优值。整个研究过程运用了多种技术和算法,包括最小二乘回归、多层感知器MLP模型、傅里叶变换、FNN以及遗传算法。 关键词包括:磁芯损耗、最小二乘回归、多层感知器MLP模型、机器学习、遗传算法等。 问题五的求解过程表明,在电力电子变换器优化设计中,准确评估磁性元件性能,特别是磁芯损耗,对于提高整体系统的效率和可靠性具有重要意义。通过实验数据和数学建模相结合,构建的预测模型能够有效评估磁芯损耗,为磁性元件设计和功率转换效率优化提供有力支持。同时,通过模型预测,可以确定最优的工作参数,为磁性元件的应用提供理论基础和实际操作指导。整体研究过程中,综合利用了现代数学建模技术和先进的机器学习方法,展现了跨学科研究在解决实际工程问题中的潜力和价值。
1
内容概要:本文探讨了基于数据驱动方法对磁性元件的磁芯损耗建模的必要性和方法。主要内容包括磁芯损耗的基本概念、现有损耗模型的分类(损耗分离模型和经验计算模型)、实验场景和数据说明。文章提出了四个具体问题:励磁波形分类、斯坦麦茨方程修正、磁芯损耗因素分析以及基于数据驱动的磁芯损耗预测模型构建。这些问题涉及实验数据的处理、模型的准确性验证以及模型的实际应用。最终,希望通过构建高精度且广泛的磁芯损耗预测模型,提高磁性元件的设计效率和性能。 适合人群:对电力电子技术、磁性元件设计及磁芯损耗建模感兴趣的研究生、科研人员和技术工程师。 使用场景及目标:① 为磁性元件的设计和优化提供精确的磁芯损耗评估工具;② 推动高频、高功率密度和高可靠性的功率变换器产品研发。 阅读建议:建议读者结合提供的实验数据,动手实践建模过程,深入理解各个步骤的意义和实现方法,特别是在励磁波形分类和磁芯损耗预测模型构建的部分。
1
在开关电源领域中,高频变压器是至关重要的组件,它主要负责电压、电流和阻抗的变换。高频变压器的核心组成部分是铁芯或磁芯,以及线圈。根据线圈的绕组数量,分为初级线圈和次级线圈。磁芯的形状对于变压器的性能有着重大影响,不同的磁芯形状在结构、尺寸、成本、散热性能、屏蔽效果等方面各有优劣。 1. 罐型磁芯:罐型磁芯将骨架和绕组几乎完全包裹,因此具有出色的EMI屏蔽效果,尺寸符合IEC标准,互换性佳。但由于其形状不利于散热,不适宜在大功率变压器和电感器中使用。此外,罐型磁芯的成本相对较高。 2. RM型磁芯:与罐型磁芯相比,RM型磁芯通过切掉侧面设计,改善了散热性能和引线引出的便利性,节约了约40%的安装空间。尽管屏蔽效果略逊于罐型,但仍然具备一定的屏蔽能力。RM型磁芯适合平面变压器或直接安装到电路板上,且可以实现扁平化设计。 3. E型磁芯:E型磁芯在成本上更具优势,制造和组装过程简便,是目前应用最为广泛的磁芯类型。其缺点是不能提供自我屏蔽。E型磁芯的散热效果良好,适用于大功率电感器和变压器,并且可以进行多方向安装和叠加使用。 4. EC、ETD和EER型磁芯:这几种磁芯结构介于E型和罐型之间,具有良好的散热和空间利用率。它们能提供更大的截面空间,适合低压大电流的应用。中心柱的圆柱形设计减少了绕组长度和铜损,同时避免了绕组线材绝缘被棱角破坏的问题。 5. PQ型磁芯:PQ型磁芯专门针对开关电源的电感器和变压器设计。它优化了磁芯体积、表面积与绕组绕制面积之间的比率,在最小体积和重量下获得最大输出功率,占用最小的PCB安装空间,设计使磁路截面积更统一,减少了工作热点。 6. EP型磁芯:EP型磁芯具有圆形中心柱,结构立体,除接触PCB板一端外,完全包裹绕组,屏蔽效果非常好。独特的形状减少了磁芯装配时的气隙影响,提供了较大的体积和空间利用率。 7. 环型磁芯:环型磁芯对制造商来说是最经济的选择,其成本相对较低,不需要额外的骨架和组装费用,适合使用绕线机进行绕制。在可比的磁芯中,屏蔽效果也相当不错。 通过上述分析可以看出,不同形状的磁芯在开关电源中具有不同的特点和适用场景,设计者需要根据具体的应用需求和条件选择最合适的磁芯形状,以确保变压器的性能和效率最大化。
2025-06-20 14:11:36 277KB 开关电源
1
PC40材质变压器磁芯参数表,包含各种形式的变压器磁芯参数信息如: EC、EE、EF、PQ 等磁芯参数
2024-04-25 09:07:33 1.7MB PC40 磁芯参数
1
日常生活中,可以看到变压台上的变压器,和我们家用电子设备不一样,但是同样作为变压的电子元器件,为什么高频变压器用的是铁氧体磁芯,而变压台上的变压器却用的硅钢片呢? 硅钢是一种合硅的钢,其含硅量在0.8~4.8%。由硅钢做变压器的铁芯,是因为硅钢本身是一种导磁能力很强的磁性物质,在通电线圈中,它可以产生较大的磁感应强度,从而可以使变压器的体积缩小。常用的变压器铁芯一般都是用硅钢片制做的。 我们知道,实际的变压器总是在交流状态下工作,功率损耗不仅在线圈的电阻上,也产生在交变电流磁化下的铁芯中。通常把铁芯中的功率损耗叫“铁损”,铁损由两个原因造成,一个是“磁滞损耗”,一个是“涡流损耗”。 金籁科技高频变压器 磁滞损耗是铁芯在磁化过程中,由于存在磁滞现象而产生的铁损,这种损耗的大小与材料的磁滞回线所包围的面积大小成正比。硅钢的磁滞回线狭小,用它做变压器的铁芯磁滞损耗较小,可使其发热程度大大减小。 既然硅钢有上述优点,为什么不用整块的硅钢做铁芯,还要把它加工成片状呢? 这是因为片状铁芯可以减小另外一种铁损──“涡流损耗”。变压器工作时,线圈中有交变电流,它产生的磁通当然是交变的。
2024-03-03 09:59:25 178KB 金籁科技 一体成型电感 贴片电感
1
这本书非常适合不需要深入研究磁芯的人,可以作为设计开关电源的磁芯的参考手册。写的非常工程化,很好懂
2023-09-17 20:03:21 2.4MB 开关电源 磁芯
1
本文分析了正激电路的基本结构,并用不同的方法对正激电路拓补结构进行分类和比较,讨论了软开关技术在正激电路中的应用和发展前景,最后,通过比较,得出正激电路拓补结构的研究方向。
2023-07-03 20:42:14 214KB 仿真
1
高频变压器磁芯参数对照表pdf,高频变压器磁芯参数对照表,有需要的可以下载哦~
2023-04-02 15:32:48 594KB 工具/软件
1
高频磁芯功率对照表.pdfpdf,高频磁芯功率对照表.pdf
2023-04-02 15:30:23 275KB 开关电源
1
变压器磁芯(功率表)doc,根据输出功率选择变压器的磁芯
2023-03-13 12:21:56 313KB 开关电源
1