内容概要:本文详细介绍了如何使用MATLAB实现综合能源系统中的主从博弈模型。作者首先展示了主从博弈的核心迭代逻辑,包括领导者和跟随者的优化策略以及价格更新方法。文中强调了带惯性的价格更新策略和价格弹性矩阵的应用,以提高收敛速度并处理多能源品类的耦合关系。此外,还讨论了收敛性调参的方法,如使用松弛因子防止震荡,并提供了可视化策略迭代图的代码。最后,作者提出了将主从博弈模块封装成独立类的建议,以便更好地应用于实际的综合能源系统中。 适合人群:具备MATLAB编程基础并对综合能源系统和博弈论感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发综合能源系统中涉及的多主体决策问题,尤其是处理电网公司和用户的交互决策。目标是通过主从博弈模型优化能源定价策略,实现系统效益的最大化。 其他说明:文中不仅提供了详细的代码实现,还包括了一些调试技巧和个人经验分享,帮助读者更好地理解和应用主从博弈模型。
2025-11-06 16:37:21 788KB MATLAB 优化算法 可视化
1
内容概要:本文深入解析了一个区域综合能源系统的规划模型,涵盖冷热电联供系统的设备选型、成本优化及约束条件设定。首先介绍了数据预处理方法,将8天的冷热电负荷数据扩展为全年数据,并进行归一化处理。接着详细解释了设备建模部分,如燃气三联供系统的效率分段函数以及设备间的协同关系。目标函数方面,不仅考虑了设备的投资成本,还包括运行燃料成本,并引入了时间权重来处理不同时段的价格差异。约束条件涵盖了供电缺口、冷量平衡、供气管道限制等多个方面。最后,利用CVXPY和Gurobi求解器进行了优化求解,并提供了详细的可视化结果展示。 适合人群:从事能源系统规划的研究人员和技术人员,尤其是对冷热电联供系统感兴趣的读者。 使用场景及目标:适用于希望深入了解区域综合能源系统规划模型的设计思路和实现细节的人群。目标是帮助读者掌握从数据预处理到模型求解的完整流程,理解如何通过数学模型优化能源系统的配置和运营。 其他说明:文中提供的代码片段展示了关键步骤的具体实现,附带详尽的注释,便于理解和复现。此外,还讨论了一些常见的陷阱和优化技巧,如设备低负荷运行效率下降、冷热电负荷单位换算等问题。
2025-10-16 23:59:07 287KB
1
内容概要:本文探讨了综合能源系统(微电网)的多电源容量优化配置及其运行策略,采用双层优化模型。上层模型旨在使投资成本最小化,下层模型则致力于将购售电成本和燃料成本降至最低。文中提供了详细的Python代码示例,展示了如何通过迭代过程不断调整容量和运行策略,最终达到成本最优。此外,还讨论了实际应用中的注意事项,如设备寿命、储能配置敏感性和约束条件的模块化设计等。 适合人群:从事能源系统规划、优化算法研究的专业人士,尤其是对微电网感兴趣的工程师和技术研究人员。 使用场景及目标:适用于需要进行综合能源系统规划和优化的企业或机构,帮助他们制定合理的容量配置方案和运行策略,以实现能源高效利用和成本降低。 其他说明:文章不仅介绍了理论概念,还提供了具体的技术实现细节,有助于读者更好地理解和应用于实际项目中。同时强调了在实际应用中应注意的一些关键点,如设备寿命、储能配置敏感性等。
2025-10-16 23:42:34 798KB Python
1
内容概要:本文详细介绍了100kW微型燃气轮机在Simulink环境下的建模及其控制单元模块的分析。模型涵盖了压缩机、容积、回热器、燃烧室、膨胀机、转子和控制单元七大模块,特别强调了变工况下各参数(如流量、压缩绝热效率、膨胀绝热效率、压缩比、膨胀比)对系统性能的影响。文中还探讨了三种主要控制策略(转速控制、温度控制和加速度控制),并通过实例展示了这些控制策略在负载变化时的具体应用。此外,文章提供了具体的MATLAB/Simulink代码片段,解释了压缩比、转动惯量等关键参数的计算方法及其对系统稳定性的重要影响。 适合人群:从事分布式能源系统设计、微型燃气轮机研究及相关领域的工程师和技术人员。 使用场景及目标:适用于需要深入了解微型燃气轮机动态特性和控制策略的研究人员,帮助他们掌握Simulink建模技巧,优化系统性能,提高仿真精度。 其他说明:文章不仅提供了理论分析,还结合实际案例和代码示例,使读者能够更好地理解和应用所学知识。
2025-10-14 21:23:23 306KB Simulink MATLAB 分布式能源
1
“电气综合能源系统研究:利用分布鲁棒机会约束应对风电不确定性风险与模糊集处理”,电气综合能源系统中基于分布鲁棒机会约束的协同经济调度策略与仿真研究,分布鲁棒;复现;电气综合能源系统;分布鲁棒机会约束(DRCC);ADMM分布式算法;全网独,恶意差评的请绕路 有意者加好友 注:非完美复现 研究内容:为了应对风电不确定性给电气综合能源系统带来的运行风险,采用分布鲁棒机会约束,通过数据驱动的方式,以少量的风电预测误差历史数据得到与矩信息有关的模糊集,并将形成的机会约束问题转化为易于求解的形式。 仿真软件:matlab 参考文档:《不确定风功率接入下电-气互联系统的协同经济调度》fuxian 注意事项[火][火]:代码注释详细,运行稳定,仿真结果如下所示。 ,分布鲁棒;复现;电气综合能源系统;分布鲁棒机会约束(DRCC);ADMM分布式算法;数据驱动;风电预测误差;协同经济调度;Matlab仿真;运行稳定。,分布式鲁棒策略下的电气综合能源系统研究与仿真实现
2025-10-09 15:32:29 535KB xbox
1
内容概要:本文详细介绍了如何利用Python实现综合能源负荷预测和微电网优化调度。首先,通过随机森林算法对历史数据进行处理,提取关键特征并构建负荷预测模型,特别强调了时间特征工程的重要性。接着,引入粒子群算法(PSO)用于优化微电网调度方案,具体展示了如何设置粒子群参数、定义成本函数以及实现功率平衡约束。实验结果显示,该方法能够有效降低用能成本约18.7%,并在实际应用中提供了灵活性和扩展性。 适合人群:对综合能源系统、负荷预测及优化调度感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要进行能源管理和优化的企业或研究机构,旨在提高能源利用效率,降低成本。通过学习本文提供的方法,可以掌握从数据预处理到模型建立再到优化调度的完整流程。 其他说明:建议初学者先使用公开数据集练习,熟悉整个流程后再应用于真实项目中。文中提到的技术细节如特征工程、PSO参数调整等对于获得良好效果至关重要。
2025-09-27 15:50:41 13.89MB
1
内容概要:文章提出基于多目标粒子群优化(PSO)算法的微电网能源系统综合运行优化策略,针对包含燃气发电机、蓄电池、制冷机组等多组件的微电网系统,构建分时段调度模型,以最小化运行成本为目标,结合能量平衡、设备容量与储能状态等约束条件。通过Python实现PSO算法,并引入模拟退火扰动机制提升全局搜索能力,有效降低运营成本17%。同时探讨了算法在多目标优化中的局限性及改进方向。 适合人群:具备一定编程与优化算法基础,从事能源系统优化、智能算法应用或微电网运行研究的工程师与科研人员,工作年限1-3年及以上。 使用场景及目标:①应用于微电网系统的分时调度优化,实现经济运行;②结合PSO与模拟退火思想提升优化算法的跳出局部最优能力;③为后续引入碳排放等多目标优化提供技术路径参考。 阅读建议:建议结合代码实现深入理解粒子编码方式、成本函数设计及约束处理机制,关注储能状态动态更新与惩罚项设置技巧,并可进一步扩展至NSGA-II等多目标算法实现综合优化。
2025-09-27 15:43:48 231KB
1
内容概要:本文详细探讨了利用改进粒子群算法(PSO)进行微电网综合能源优化调度的方法。首先介绍了微电网的概念及其优化调度的重要性,然后建立了包含可再生能源、储能系统和常规能源在内的优化模型,优化目标涵盖经济性和环保性。接着,针对传统PSO算法存在的局限性,提出了引入自适应惯性权重、动态调整加速因子以及混合变异操作的改进措施。文中还提供了Python代码实现,展示了改进算法的具体步骤,并通过实验验证了其优越性。结果显示,改进后的PSO算法在收敛速度和解质量方面均有显著提升。 适合人群:从事微电网研究、智能优化算法开发的研究人员和技术人员,尤其是对粒子群算法有一定了解并希望应用于实际工程问题的人士。 使用场景及目标:适用于需要对微电网进行高效、经济且环保的能源调度的场合,旨在通过改进的粒子群算法实现快速收敛和高质量的优化解,从而降低成本并减少环境污染。 其他说明:本文不仅提供了理论分析,还包括详细的代码实现,有助于读者更好地理解和应用所提出的改进算法。此外,文中提到的改进策略对于其他类似优化问题也具有一定的借鉴意义。
2025-09-27 15:42:00 4.99MB
1
内容概要:本文围绕MATLAB在分布式能源系统中的应用,重点介绍了基于IEEE30节点的分布式能源选址与定容问题的建模与优化实现方法。通过结合智能优化算法(如PSO、NSGA-Ⅲ等)和电力系统仿真技术,对分布式电源的位置和容量进行协同优化,旨在提升配电网运行效率与电能质量。文中还提及多种相关技术扩展,包括微电网调度、负荷预测、网络动态重构等,并提供了完整的MATLAB代码实现支持,便于复现实验结果。; 适合人群:电气工程、能源系统及相关领域的科研人员,具备一定MATLAB编程基础和电力系统知识的研究生或工程师; 使用场景及目标:①解决分布式电源在配电网中的最优选址与定容问题;②开展微电网优化、配电网重构、多目标调度等研究;③复现EI期刊论文成果,支撑学术发表与项目开发; 阅读建议:建议结合提供的网盘资源下载完整代码,按照文档目录顺序逐步学习,重点关注算法实现与IEEE30节点模型的构建细节,配合仿真调试加深理解。
2025-09-27 11:49:19 10KB MATLAB 分布式能源 IEEE30节点
1
基于阶梯碳交易成本的含电转气-碳捕集(P2G-CCS)耦合的综合能源系统低碳经济优化调度,采用(Matlab+Yalmip+Cplex) 考虑P2G设备、碳捕集电厂、风电机组、光伏机组、CHP机组、燃气锅炉、电储能、热储能、烟气存储罐。 随着全球变暖问题的日益严峻,低碳经济的发展模式已成为世界各国追求的目标。在此背景下,综合能源系统的低碳优化调度显得尤为重要。本文研究了一种基于阶梯碳交易成本的含电转气-碳捕集(P2G-CCS)耦合的综合能源系统低碳经济优化调度模型。该模型不仅考虑了多种能源生产与转换设备,如P2G设备、碳捕集电厂、风电机组、光伏机组、CHP机组、燃气锅炉、电储能、热储能、烟气存储罐等,而且还引入了阶梯碳交易成本机制,以期在保证能源供应安全的基础上,实现经济成本和碳排放量的双重优化。 该优化调度模型采用了一套完整的技术体系,包括Matlab用于模型的编程与仿真,Yalmip作为优化工具箱,以及Cplex作为求解器。这些工具的综合运用,大大提高了模型求解的效率和准确性。在模型中,P2G技术作为连接电力系统与天然气系统的关键环节,不仅能够促进可再生能源的消纳,还能提高整个能源系统的灵活性。而碳捕集技术(CCS)的应用,则可以有效减少电力生产过程中的碳排放,从而降低整体的环境影响。 在构建优化调度模型时,研究者需要对各种能源设备的运行特性、成本特性以及它们之间的相互作用进行深入分析。例如,风电机组和光伏机组的输出功率受到天气条件的影响,具有随机性和不确定性;电储能和热储能设备则能够平抑这些波动,提供稳定的能源供应;CHP机组能够同时产生电力和热能,提高能源利用效率;燃气锅炉作为传统的热能供应设备,其运行成本和碳排放也是模型中需要考虑的因素之一。 为了实现低碳经济优化调度,研究者通常会采用多目标优化的方法,将经济成本最小化和碳排放量最小化作为目标函数。同时,为了保证优化调度的可行性,还需要考虑各种设备的技术限制和运行约束,如设备的最大最小输出限制、能量存储设备的充放电限制、碳捕集效率限制等。 该优化调度模型的一个显著特点是在碳交易成本的设计上采用了阶梯式结构。与传统的线性碳交易成本不同,阶梯式碳交易成本能够更好地激励碳排放量的减少。具体来说,当企业或系统的碳排放量超过某个临界值时,其每增加一定量的碳排放所应支付的碳交易费用将会增加,这种激励机制促使企业在经济成本和碳排放之间进行更合理的权衡。 基于阶梯碳交易成本的含电转气-碳捕集耦合的综合能源系统低碳经济优化调度研究,不仅涉及多种能源设备与技术的集成应用,而且通过创新性的碳交易成本设计,推动了综合能源系统在保证能源供应的同时,实现低碳发展的目标。这一研究成果对于指导实际的能源系统规划和运行管理具有重要的理论和实践意义。
2025-09-27 11:31:38 726KB matlab
1