智慧厨房不规范行为检测数据集是以Pascal VOC格式和YOLO格式组织的,包含了7510张高分辨率的jpg图片及其对应的标注信息。数据集中的标注类别共9种,分别为手套、口罩、口罩不规范佩戴、无手套、无帽子、无口罩、手持手机、帽檐向后和帽檐向前。每张图片都配有一个VOC格式的xml文件和一个YOLO格式的txt文件,通过矩形框标识出图片中相应不规范行为的位置。 该数据集的标注工具为labelImg,是常用的手动标注工具,能够帮助研究者快速准确地在图像中进行目标框的标注。标注规则相对简单明了,只需使用矩形框对图像中的不规范行为进行标注。数据集中涵盖了7510张图像,每张图像都包含对应的标注文件,没有分割路径信息,不包含训练模型或权重文件,也不保证模型精度。 9个标注类别涉及了厨房工作人员在卫生和个人防护方面的常见不规范行为,这些行为包括个人防护装备(PPE)的缺失或不当使用。例如,手套(gloves)和口罩(mask)的正确佩戴是防止食物污染和病毒传播的重要措施,而口罩不规范(mask_improperly)标注类别则涵盖了口罩佩戴不正确的情况。无手套(no_gloves)、无帽子(no_hat)和无口罩(no_mask)的标注类别涉及缺少相应防护装备的情况。手持手机(phone)在操作过程中被认为是一种不卫生的行为,可能造成食物污染。而帽檐向后(visor_back)和帽檐向前(visor_forward)则关注厨师帽佩戴是否规范。 数据集中的标注总框数达到了62832个,这意味着每张图片平均有8.37个矩形框用于标注不同的不规范行为。在各个类别中,部分标注框数量差异较大,如visor_back类别框数最多,而mask_improperly的框数相对较少。这种差异可能反映了在实际厨房操作中某些不规范行为出现的频率更高。 这个数据集为研究人员提供了一个实用的资源,用于训练和评估针对厨房环境下的不规范行为检测模型。通过对这些数据的分析和模型的训练,可以进一步提高厨房工作人员的安全意识和卫生习惯,减少食物安全风险,增强厨房作业的安全性。
2025-11-05 13:26:40 1.06MB 数据集
1
YOLOv11目标检测实战项目 本项目是一个基于深度学习的实时异常行为检测系统,专注于人体摔倒检测。系统使用YOLOv11姿态估计模型进行人体关键点检测,并结合BYTETrack多目标跟踪算法实现对多个目标的持续跟踪和状态判断。
2025-10-26 13:56:11 146.4MB 异常行为检测 目标检测 摔倒检测
1
猫行为检测数据集是一种专门用于训练和测试计算机视觉算法的目标检测数据集。该数据集包含了5997张图片,这些图片均为jpg格式,且附有精确的标注信息。标注工作遵循了Pascal VOC格式和YOLO格式的规范,其中不包含分割路径的txt文件,仅包含jpg图片以及对应的VOC格式xml文件和YOLO格式txt文件。每张图片都经过了精确的手动标注,以确保训练出来的模型能够准确识别图片中猫的不同行为。 该数据集的标注信息包括了五种类别的标签,分别是"belly"(匍匐)、"fight"(打闹)、"play"(玩耍)、"stretch"(伸展身体)以及"yawn"(打哈欠)。每个类别都对应有相应的矩形框标注,用以指示图片中猫的具体行为动作区域。具体到每个类别的框数分别为:belly有1193个框、fight有768个框、play有1393个框、stretch有1322个框、yawn有1338个框,总计框数达到了6014个。这些标注是使用labelImg工具进行的,且每个矩形框都准确地对应了猫的行为动作。 数据集的标注工作严格遵守了相应的规则,即对每一种猫的行为类别都进行了画矩形框的操作。这使得使用该数据集训练出来的目标检测模型能够准确地识别和定位图片中猫的行为状态。此外,数据集的制作方还提供了图片预览和标注例子,以便用户更好地理解数据集的具体内容和使用方法。 值得注意的是,本数据集不包含任何针对训练模型的精度保证,也不包含任何模型或权重文件,它仅仅是一个带有精确标注的猫行为图片集合。数据集的使用者在使用过程中应当自行确保训练模型的精度和准确性,同时也要理解该数据集仅提供准确且合理的标注图片,使用者应对此有充分的认知。 通过使用这样的数据集,研究者和开发者可以训练出能够识别猫的不同行为的智能系统。这不仅对宠物行为研究有重大意义,对于开发宠物监控设备、提升智能宠物陪伴质量以及在人工智能领域进行深度学习模型开发等方面都有着重要价值。由于数据集的标注质量和丰富度较高,它可以显著提高目标检测模型的性能,特别是在处理与猫相关行为识别任务时。此外,使用本数据集进行训练和测试,可以帮助开发者获取更多关于如何改进算法和优化模型结构的见解,从而推动目标检测技术的进步。
2025-10-20 00:06:08 1.9MB 数据集
1
数据集名称:课堂行为检测数据集(基于YOLOv8的目标检测) 数据集描述: 本数据集面向基于 YOLOv8 的课堂行为目标检测任务,旨在实现对学生在教室内典型行为(如举手、睡觉、阅读、书写、使用手机、交谈、转头等)的精确识别与定位。数据采集自真实教学场景,涵盖多个时间段、角度与环境条件,具备良好的多样性、代表性和实际应用价值,适用于智慧教育、课堂行为分析、教学管理等多个场景。 数据特点: 标注类型:采用YOLO格式,提供边界框坐标与行为类别标注; 行为类别:覆盖典型课堂行为(支持自定义扩展类别); 图像数量:训练集-3192张; 分辨率:统一/多种分辨率(如有特殊说明可补充); 适用模型:适配YOLOv8及主流目标检测模型; 应用场景:智慧教室、教学管理、课堂行为分析、人机交互等。 应用价值: 该数据集可广泛应用于智慧教育领域,有助于构建基于计算机视觉的课堂行为分析系统,提升教学过程的可视化管理水平,实现课堂纪律自动评估、学生参与度分析等功能,助力教育信息化发展。
2025-10-11 17:17:41 265.08MB 目标检测 yolo 课堂行为
1
标题中的“MATLAB视频人体异常行为检测识别[GUI]”是指使用MATLAB编程语言开发的一个图形用户界面(GUI)应用程序,专门用于人体异常行为的检测和识别。MATLAB是一种广泛应用于科学计算、图像处理和数据分析的高级编程环境,其丰富的库函数和强大的计算能力使其在视觉信号处理领域尤其受欢迎。 描述中提到的“源码都是经过本地编译过可运行的”,意味着下载的压缩包包含了完整的MATLAB代码,用户可以直接在自己的MATLAB环境中运行这些代码,而无需进行额外的编码工作。"按照文档配置好环境"暗示了该资源可能附带了一份指导文档,指导用户如何设置MATLAB环境,包括导入必要的工具箱和库,以确保代码的顺利执行。 “资源项目源码系统完整”表明这个项目是完整的,不仅包含主程序,可能还包括辅助函数、数据处理脚本等,形成了一个全面的解决方案。内容经过“专业老师审定”,意味着代码质量高,逻辑清晰,适合学习和参考。 “计算机毕设”和“管理系统”标签可能表示这个项目适用于计算机科学和技术专业的毕业设计,特别是那些涉及监控系统或智能安全管理系统的学生。而“毕设源码报告”则提示这可能是一个完整的毕业设计项目,不仅有源代码,还可能包括设计报告,详细解释了项目的实施过程和结果。 “编程”标签则强调了此资源的技术性质,即通过编程实现特定功能。 至于“project_code_01”这个子文件名,通常表示这是一个系列的一部分,可能还有其他的代码文件(如project_code_02、project_code_03等),它们可能是不同的模块或者不同阶段的代码。 这个资源包提供了一个基于MATLAB的、具有GUI的人体异常行为检测系统,适用于学习和研究,特别是对于计算机科学与技术专业的学生进行毕业设计或项目实践。用户可以借助提供的源代码和文档,了解和掌握视频处理、行为分析以及GUI编程的相关技术,并根据自己的需求进行修改和扩展。
1
样本图:blog.csdn.net/2403_88102872/article/details/144143403 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1529 标注数量(xml文件个数):1529 标注数量(txt文件个数):1529 标注类别数:3 标注类别名称:["lie","sit","stand"] 每个类别标注的框数: lie 框数 = 503 sit 框数 = 455 stand 框数 = 1270 总框数:2228 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-09-05 14:12:00 407B 数据集
1
# 基于PyTorch深度学习框架的人体行为检测项目 ## 项目简介 此项目致力于通过深度学习方法检测从摄像机拍摄的视频中预先定义的多种人体行为。我们将开放获取的视频数据集作为输入,利用先进的深度学习模型进行行为识别与判断。 ## 项目的主要特性和功能 1. 视频数据预处理: 提供Python脚本进行视频文件的处理,包括视频加载、帧提取以及图像预处理等步骤,为后续的行为检测提供数据基础。 2. 人体行为检测: 利用深度学习模型(如卷积神经网络CNN结合循环神经网络RNN等)进行人体行为的检测与识别。模型训练基于大量标注的行为数据,能够自动学习和识别多种预先定义的行为模式。 3. 实时视频处理: 提供交互式的视频处理工具,允许用户在视频播放过程中实时观察行为检测的结果,并进行标注和反馈。 4. 物体框标注工具: 提供简单的物体框标注工具,用于图像或视频中物体的标注工作,为后续的行为检测提供标注数据。 ## 安装使用步骤 ### 前提条件
2025-07-01 16:18:32 3.46MB
1
车站异常行为检测数据集是为了解决在车站场景下,如何利用计算机视觉技术自动识别和检测异常行为的问题。此类研究在提升车站安全管理、预防犯罪行为、以及提升公共安全方面具有重要的应用价值。本数据集采用Pascal VOC格式和YOLO格式结合的方式,为研究者和开发者提供了2293张图片及其对应的标注信息,涵盖了包括正常行为在内的4个类别。 VOC格式通常指的是Pascal Visual Object Classes格式,这是一种广泛应用于目标检测和分类任务的标注格式,其包括图片、标注文件(XML格式)和分类文件等,每个标注文件详细记录了每个目标的位置和类别信息。而YOLO(You Only Look Once)格式的标注文件通常是txt文本文件,以特定格式记录了目标的类别和边界框坐标信息,适合YOLO模型的训练使用。 在本数据集中,包含了4个主要的标注类别,分别是“斗殴”、“损毁财物”、“摔倒”和“正常”。这些类别是车站异常行为检测中最常见的几类行为,具有很高的代表性。每个类别都通过矩形框的形式进行标注,矩形框内即为目标区域。例如,“斗殴”类别下标注了794个矩形框,表示数据集中共有794张图片包含了斗殴行为。 标注工具选择了labelImg,这是一个流行的图像标注工具,支持矩形框标注,非常适合本数据集的需求。标注过程中,工作人员会仔细分析图片内容,识别出不同类别的行为,并用矩形框准确地标出这些行为的位置。 在总计5216个标注框中,不同类别的框数存在差异,其中“摔倒”类别的框数最多,达到1334个,显示出数据集中摔倒这一行为出现的频率较高,可能是因为车站人流密集,摔倒的风险相对较大。而“损毁财物”类别的框数最少,只有86个,可能是因为这类行为本身发生的频率较低,或者是因为其在监控视频中不易被捕捉到。 值得注意的是,本数据集提供的仅仅是经过准确标注的图片数据,不包含任何用于模型训练的权重文件,也不对使用该数据集训练得到的模型或权重文件精度作出任何保证。这是因为在机器学习和深度学习中,模型的表现不仅仅取决于数据集的质量,还与模型的架构、训练过程、超参数设置等因素有关。 此外,数据集还提供了一部分图片的预览和标注例子,便于研究者和开发者直观了解数据集的质量和标注风格。数据集的提供者鼓励用户在使用数据集时遵守相关法律法规,尊重数据隐私和版权,合理合法地利用数据集进行研究和开发活动。
2025-06-13 10:34:02 1.02MB 数据集
1
"深度学习YOLOv8+Pyqt5联合打造实时吸烟行为检测系统:完整源码+数据集+详细说明,助力禁烟政策执行",基于深度学习YOLOv8与Pyqt5集成,全方位公共场所抽烟检测与识别系统,附带全套源码及详细指南——轻松构建、跑通与定制升级,基于深度学习YOLOv8+Pyqt5抽烟吸烟检测识别 将获得完整源码+数据集+源码说明+配置跑通说明 可以额外付费远程操作跑通程序、定制其他课题 支持图片、视频、摄像头检测 在现代社会,公共场所的禁烟政策越来越严格,以减少二手烟对非吸烟者的影响。 然而,监管和执行这些政策仍然面临挑战。 本文提出了一种基于YOLOv8(You Only Look Once version 8)的抽烟检测系统,该系统结合了深度学习技术和PyQt5图形用户界面框架,旨在实时监测并识别公共场所中的吸烟行为。 该系统的设计考虑了实时性、准确性和用户友好性,为提高公共场所的空气质量和遵守禁烟规定提供了。 ,基于深度学习; YOLOv8; Pyqt5; 抽烟检测识别; 完整源码; 数据集; 配置跑通说明; 远程操作; 定制课题; 图片/视频/摄像头检测; 禁烟政策; 实时监测;
2025-05-28 15:49:00 1.91MB csrf
1
基于YOLOv5技术的实时作弊行为检测,Python+PyCharm操作平台与图形界面简洁易用,基于YOLOv5的实时作弊行为检测系统的图形化界面与Python实现,基于YOLOv5的作弊行为检测系统,Python和pycharm实现,可实时检测,有方便操作的图形化界面 ,基于YOLOv5的作弊行为检测系统; 实时检测; Python; pycharm实现; 图形化界面,基于YOLOv5的实时作弊检测系统:Python与PyCharm的图形化界面实现 YOLOv5是一种先进的目标检测算法,它能够在实时场景中准确识别和定位图像中的目标物体。基于YOLOv5技术开发的实时作弊行为检测系统,通过在Python编程语言环境下结合PyCharm集成开发环境,成功实现了图形用户界面(GUI)的简洁易用。该系统允许用户通过直观的界面进行实时监测,大幅提升操作便利性和效率。此外,系统的实现依赖于强大的Python编程能力,通过编写高效的代码,使得系统的运行稳定,响应速度快。 系统的图形化界面设计得既美观又实用,用户可以轻松地进行作弊行为的实时检测,而不必深入了解背后的复杂技术。此外,系统还能够支持多种环境下的应用,无论是在考场监控还是在网络教育等领域,都能发挥其功效。通过优化算法和界面设计,该系统成为了作弊行为检测领域的一项创新技术,为教育、考试等场景提供了一种有效的技术手段。 YOLOv5算法的核心优势在于它的速度和准确性。YOLOv5的模型采用了卷积神经网络(CNN)架构,能够快速处理图像数据,并通过训练学习到大量作弊行为的特征。在检测过程中,系统能够实时对视频帧进行分析,一旦识别到潜在的作弊行为,便会立即发出警报,从而有效地遏制作弊行为的发生。同时,系统还具有良好的自适应能力,能够适应不同的检测环境和条件。 在技术实现方面,开发者需要具备深厚的Python编程基础,熟悉机器学习和深度学习相关知识,以及对YOLOv5模型的深入了解。此外,开发过程中还需要进行大量的数据收集和预处理,模型训练和调优,以及界面设计和功能测试等。在系统的构建中,每个环节都至关重要,任何细节的失误都可能影响到最终系统的性能和用户体验。 在未来的开发中,该系统有望进一步完善,比如引入更多种类的作弊行为特征,提升模型的泛化能力,优化用户交互流程,提高系统的稳定性和准确性。同时,随着人工智能技术的不断进步,系统还可以融合更多创新的技术,比如使用增强学习、自然语言处理等技术,来提升系统的人机交互能力,使其更加智能化、自动化。 此外,文档资料提供了系统开发的技术分析和实现细节,内容涵盖了技术原理、模型预测、控制策略以及技术探索等多个方面。开发者可以从这些文档中获得系统的理论支持和实践经验,为系统的优化和升级提供参考。 系统的成功开发和应用,不仅在作弊行为检测领域具有重要的实践意义,也展示了人工智能技术在教育技术领域的广阔应用前景。它为教育公平、考试公正提供了强有力的技术支撑,有助于打造一个更加公平、透明的教育和考试环境。随着技术的进一步发展,可以预见,类似系统将会得到更加广泛的应用,为教育行业的发展贡献更多力量。
2025-04-13 00:15:24 12.19MB 开发语言
1