在当今数字娱乐产业快速发展的背景下,游戏开发已成为计算机科学与艺术设计交叉领域的重要组成部分。特别是在中国,随着科技的进步和文化的多元化,游戏设计和开发教育受到了前所未有的重视。在这样的大环境下,深圳大学作为一所具有前瞻性视野的高等教育机构,其计算机游戏开发实验课程旨在培养学生的实际操作能力,加深对游戏开发流程的理解,以及熟悉相关开发工具和技术。 《太空射击》作为深圳大学计算机游戏开发实验三的项目之一,是一个典型的Unity游戏引擎开发的教学案例。Unity是一款功能强大的跨平台游戏开发工具,支持2D、3D、VR等多种游戏类型。它以其易用性、高效性和对不同平台的广泛支持而受到全球游戏开发者的青睐。通过此类项目的实践,学生们可以深入了解Unity引擎的使用,包括场景搭建、角色控制、物理碰撞、AI行为设计以及用户界面UI的制作等。 项目《太空射击》是一款太空题材的射击游戏,玩家在游戏中扮演太空战机驾驶员,需在虚拟的宇宙空间中与敌对势力进行激烈对抗。此类型游戏通常要求玩家控制战机在多变的战场环境中快速反应,躲避敌方攻击并摧毁敌方目标。这不仅考验玩家的操作技巧,也对游戏的设计者提出了较高的要求。开发者需要具备良好的游戏设计逻辑、空间想象能力以及对用户体验的敏感把握,才能设计出既具有挑战性又富有趣味性的游戏环境。 由于《太空射击》是一个可运行的源码项目,这意味着学生不仅能够接触到游戏设计的理论知识,还能亲手实现从编程到调试的完整开发过程。通过实际操作,学生能够更加直观地学习到如何将游戏概念转化为具体的游戏程序代码。在源码的基础上,学生还可以进一步进行修改和创新,比如添加新的游戏元素、改进现有机制或优化玩家体验等,从而加深对游戏开发全流程的认识。 此外,由于项目使用的是Unity引擎,学生在完成《太空射击》项目的过程中,还将学习到如何利用Unity的资源商店获取各种游戏开发所需的模型、动画和声音资源。这不仅有助于提高开发效率,也为学生在今后独立开发游戏提供了丰富的素材和灵感。 《太空射击》项目不仅是深圳大学计算机游戏开发实验教学中的一个环节,更是学生在理论与实践相结合、学习与创新相融合的环境中,提升个人专业技能的宝贵机会。通过该项目的学习和实践,学生将有机会为未来的数字娱乐产业输送具备实际开发能力的优秀人才。
2025-06-23 23:58:29 125.67MB Unity 游戏开发
1
《药品供销存贮系统》是计算机专业学生进行毕业设计的一项重要课题,主要目的是设计并实现一个能够有效管理药品从采购到销售全过程的信息化系统。这个系统涵盖了药品的入库、出库、库存管理、销售记录等多个关键环节,对于提升药店或医院的运营效率具有重要意义。 在该毕业设计中,学生通常会采用Visual Basic(VB)作为前端开发工具,Access作为后台数据库,构建一个用户友好的图形界面和数据存储解决方案。Visual Basic是一种面向对象的编程语言,适合开发Windows应用程序,其易用性和丰富的控件库使得界面设计变得简单。Access则是一款关系型数据库管理系统,适用于小型企业或个人项目的数据存储和管理,其操作简单,能与VB很好地集成,便于数据的读取和写入。 设计内容可能包括以下几个部分: 1. **封面**:毕业设计的封面通常包含设计题目、作者姓名、指导教师、完成日期等信息,展示设计的基本概况。 2. **开题报告**:开题报告是项目启动阶段的文档,详细阐述了设计目标、研究背景、技术路线、预期成果等内容,为后续工作提供方向。 3. **论文**:论文是设计的理论部分,详细描述了系统的架构设计、功能模块、实现方法、技术难点及解决策略,以及系统测试和性能评估。 4. **任务书**:任务书明确了设计的具体任务和要求,包括系统功能需求、技术指标、进度安排等。 5. **答辩PPT**:答辩PPT是毕业设计展示的辅助材料,通过图表和简要文字说明,让评委快速理解系统的核心功能和创新点。 6. **外文文献及中文翻译**:这部分可能包含相关的学术文章或技术报告,用于拓宽研究视野,理解国内外同类系统的最新进展,并提供翻译以供参考。 7. **源代码**:VB+Access的源代码是实际的程序实现,包括数据库设计、用户界面、业务逻辑等,是系统运行的基础。 通过这个毕业设计,学生将学习到如何结合编程技术和数据库管理,构建一个实用的信息管理系统,同时提升问题解决、文档编写和口头表达能力。这样的项目不仅有助于理论知识的应用,也为未来从事软件开发工作奠定了基础。
2025-06-23 23:31:03 2.33MB 毕业设计 毕设源码
1
山东大学软件学院作为国内外知名的高等学府,在计算机科学与技术领域拥有深厚的研究基础和教学经验。计算机图形学作为软件学院的核心课程之一,旨在培养学生掌握图形图像处理的基本理论、基本知识和基本技能,使学生能够了解计算机图形学在多媒体、游戏设计、虚拟现实、计算机辅助设计等领域的应用。 个人整理的复习资料是计算机图形学学习过程中不可或缺的辅助工具,这些资料往往包括了课程讲义、习题、经典案例分析以及相关的研究论文。在学习的过程中,学生需要对图形学的基本概念有清晰的认识,如像素、分辨率、颜色模型、图形变换等基础知识点。此外,对于图形学中更高级的内容,例如三维建模、光照模型、纹理映射以及图形渲染等技术,学生也应有深入的理解和应用能力。 在复习过程中,学生应当学会如何将抽象的概念与具体的实践相结合,通过上机实验、编写程序来加深对图形学算法的理解。例如,在学习二维图形绘制技术时,学生可以通过编程实践来掌握各种基本图形的绘制方法,以及图形的移动、旋转和缩放等操作。在学习三维图形处理时,需要了解三维空间中物体的表示方法,学习如何构建三维场景,以及如何运用光照和阴影效果来提高图像的真实感。 计算机图形学的应用极为广泛,它不仅涉及计算机科学的诸多方面,还与艺术设计、工程模拟、医疗成像等领域紧密相关。因此,该课程的学习对于软件学院学生的综合素质培养具有重要的意义。通过对计算机图形学的深入学习,学生不仅能够掌握图形图像处理的专业技能,还能够提升创新思维和解决实际问题的能力。 作为山东大学软件学院的学生,掌握好计算机图形学的知识,对于未来无论是继续深造还是投身于相关行业工作,都是一笔宝贵的财富。学生应当充分认识到这一点,并在老师的指导下,结合个人整理的复习资料,扎实掌握课程知识,不断实践和探索,以达到更高的学术水平和专业能力。
2025-06-23 22:05:01 457.51MB 学习资料
1
【基于 FPGA 的出租车计费系统设计】 出租车计费器在出租车行业中扮演着至关重要的角色,作为乘客和司机之间交易的规范,它确保了公平且准确的费用计算。传统的计费器通常采用单片机实现,但这种方法存在升级复杂、成本高昂的问题。随着技术的发展,基于 FPGA(Field Programmable Gate Array,现场可编程门阵列)的出租车计费系统应运而生,解决了小型化、低功耗、高可靠性的挑战,并且具有更短的开发周期和更低的开发成本,尤其适用于小批量、多品种的产品需求。 FPGA 是一种可编程逻辑器件,采用 CMOS-SRAM 工艺制造,由 Xilinx 公司于1985年首次推出。它允许用户根据特定应用进行逻辑配置,提供灵活且高效的硬件解决方案。在出租车计费系统中,FPGA 可以快速地执行复杂的计费算法,确保计费的准确性和实时性。 本文介绍的设计方案涵盖了使用 VHDL(VHSIC Hardware Description Language,超高速集成电路硬件描述语言)对计费器模块进行描述。VHDL 是一种用于数字电路设计的标准化语言,允许设计师以行为和结构的方式描述硬件逻辑。通过 MAX+PlusⅡ 软件进行模块级别的仿真,可以预先验证设计的正确性,减少硬件实施阶段的错误。 在设计过程中,首先定义了计费器所需的各种功能模块,如里程计算、时间计费、等待时间处理等,然后使用 VHDL 对这些模块进行详细描述。接下来,通过仿真工具 MAX+PlusⅡ 对这些模块进行联合仿真,确保它们在不同条件下的正确工作。 设计通过 DVCC-EJH 教学实验系统得以实现,选择 ALTERA 公司的 ACEX1K 系列 EP1K100Q208-3CN 芯片进行系统下载和仿真调试。ALTERA 的 FPGA 芯片以其高性能和灵活性被广泛应用于各种嵌入式系统中,是实现出租车计费系统理想的硬件平台。 关键词:电子设计自动化(EDA)、FPGA、VHDL、MAX+PlusⅡ、出租车计费器 基于 FPGA 的出租车计费系统设计是一种创新且高效的解决方案,它克服了传统计费器的局限性,提高了系统的可靠性,降低了维护成本,为出租车行业的现代化发展做出了贡献。同时,该设计方法也为其他类似领域的应用提供了借鉴,如公共交通、物流跟踪等,展示了 FPGA 在嵌入式系统中的广阔应用前景。
2025-06-23 17:21:40 1.88MB
1
软件缺陷预测技术对于确保软件产品的可靠性以及降低软件开发和维护成本具有重要作用。传统的软件缺陷预测方法依赖于软件度量元信息,如代码行数、控制流圈复杂度等,来构建机器学习模型进行缺陷预测。然而,这种方法存在明显的不足,因为它无法充分捕捉软件的语法结构信息和语义信息,导致缺陷预测准确性受限。 为了解决这一问题,本文提出了一种基于程序语义和长短期记忆网络(LSTM)的软件缺陷预测模型,简称为Seml。Seml模型采用深度学习技术来学习程序的语义信息,并用以预测程序中可能出现的缺陷。该模型的一个关键特点是,将程序源码中抽取的token转换成分布式向量表示,这样做能更好地表达代码的语义信息,从而有助于提升软件缺陷预测的准确率。 Seml模型在公开数据集PROMISE上进行的实验结果表明,其在项目内缺陷预测和跨项目缺陷预测方面的准确率均高于现有的基于深度学习的方法以及基于度量元的方法。这表明,Seml模型在捕获程序的语义信息方面更具优势,能够更准确地预测软件缺陷。 在讨论Seml模型的过程中,文章还提到了词嵌入技术。词嵌入是一种将词语映射到实数向量的技术,它使得相似的词语在向量空间中也具有相似的距离。这种方法在处理自然语言处理(NLP)任务中十分常见,而在软件缺陷预测模型中使用词嵌入技术,是为了更有效地处理程序源码中的token,从而更好地捕捉代码的语义信息。 此外,文章还提到了其他一些关键点。比如,软件早期的缺陷预测技术通常利用软件模块及其标签(有缺陷/无缺陷)来构建机器学习模型,并利用构建好的模型预测新模块是否含有缺陷。而大多数现有工作都利用了人工设计的度量元作为特征,例如Halstead特征、McCabe特征、CK特征、Mood特征等。这些特征虽然在一定程度上有助于软件缺陷预测,但仍然无法充分捕捉程序的语义信息。 作者在文献中引用了Wang等人提出的一种基于深度学习的缺陷预测方法,该方法使用了深度信念网络(DBN)来处理从程序源码中抽取的序列,并从中学习程序语义信息。尽管实验结果表明这种方法能够取得比传统方法更高的F1值,但其存在的问题是DBN在处理大规模数据时的效率和准确性。 从这些讨论中我们可以看出,Seml模型的核心优势在于其能够通过深度学习和词嵌入技术,更好地捕捉和表达程序的语义信息。这对于提升软件缺陷预测的准确性和效率至关重要。通过这一点,Seml模型有望在软件工程领域产生积极的影响,为开发者提供更加强大和精确的工具,以辅助他们在软件开发过程中及时发现潜在的缺陷,从而进一步提高软件质量和可靠性。
2025-06-23 15:20:37 505KB 计算机应用技术
1
计算机图形学是研究如何使用计算机技术生成、处理、存储和显示图形信息的一门学科。OpenGL是一种开放标准的编程接口,用于渲染2D和3D矢量图形。软光栅(Software Rasterization)是一种将3D模型转换成2D图像的算法,通常在没有专用图形处理硬件的情况下使用软件模拟光栅化过程。 在“计算机图形学—从0开始构建一个OpenGL软光栅课程”中,将引导学习者从零基础开始,一步步深入到OpenGL的基本概念、原理和实践应用中。课程内容可能会涉及OpenGL的历史背景、图形管线(Graphics Pipeline)的介绍、OpenGL上下文和窗口系统、基本绘图命令、顶点处理和光栅化过程、着色器语言GLSL的基础知识以及如何实现一些基础的3D图形效果。此外,课程还将教授学生如何编写代码来模拟软光栅,实现基本的3D图形绘制,从而加深对图形学原理的理解。 课程可能采用实例驱动的方式,通过具体的编程实践,使学习者能够更加直观地理解图形学中的各种概念和技术细节。教学过程中,老师可能会着重于算法的逐步构建,让学员能够清晰地看到从抽象的数学公式到具体计算机图形化表达的整个过程。在学习过程中,学员能够通过观察软光栅算法的实现来对比传统光栅化过程中的硬件加速效果,这不仅有助于理解图形硬件的工作原理,还能激发学生对图形学深层次探索的兴趣。 此外,课程可能会安排一定难度的项目实践,如实现一个简单的3D场景渲染或者参与一个完整的图形渲染器开发。通过这样的实践,学习者可以在动手操作中遇到和解决各种实际问题,如坐标变换、光照计算、纹理映射、深度测试等。这不仅能够锻炼学员的编程能力,也有助于提升其问题分析和解决能力。 综合来看,这门课程适合那些对计算机图形学感兴趣的初学者、计算机科学与技术专业的学生以及希望提高3D图形编程能力的开发者。通过本课程的学习,学员将掌握OpenGL的核心概念和使用方法,以及如何通过软件方式实现基本的3D图形渲染。
2025-06-23 10:07:04 232B OpenGL
1
计算机体系结构是计算机科学与技术领域中的核心课程之一,它主要研究如何设计和构建高性能、高效率的计算机系统。华中科技大学计算机系统结构方向的考研复试资料,旨在帮助考生深入理解这一领域的关键概念和技术,为面试做好充分准备。以下是根据提供的压缩包文件名所涉及的一些重要知识点: 1. **存储层次**:存储层次理论是现代计算机系统中内存管理的基础。它涉及到高速缓存(Cache)、主存(RAM)和辅助存储器(如硬盘)之间的层次结构,目的是通过优化数据访问速度来提高整体系统性能。PPT可能涵盖了高速缓存的工作原理、替换策略(如LRU、LFU等)以及缓存的命中率计算。 2. **地址映射**:在计算机系统中,逻辑地址到物理地址的转换是通过地址映射实现的。这部分内容可能探讨了几种常见的地址映射方式,例如直接映射、全相联映射和组相联映射,以及它们各自的优缺点和适用场景。 3. **多处理机**:随着并行计算的发展,多处理机系统成为了现代计算机架构的重要组成部分。Chap7-多处理机可能讲述了多处理器系统的分类(如对称多处理SMP、分布式内存MPP等),并行算法的设计原则,以及如何实现负载均衡和通信机制。 4. **输入/输出系统(IO系统)**:计算机系统与外部设备交互依赖于IO系统。Chap6-IO系统可能详细讲解了中断、DMA(直接内存访问)和I/O端口等IO控制方式,以及现代I/O子系统的结构和设计,如PCI-E总线、USB协议等。 5. **第一章至第三章**:虽然具体章节内容未知,但通常会涵盖计算机体系结构的基本概念,如指令集架构(ISA)、计算机的五大部件(运算器、控制器、存储器、输入设备和输出设备)、计算机的运算基础以及数据表示。 这些内容对于理解和设计高性能的计算机系统至关重要,也是计算机专业研究生必须掌握的基础。考生应深入学习每个主题,理解其背后的原理,并能够应用这些知识解决实际问题。同时,熟悉这些基本概念也有助于应对复试中的问答环节和可能的编程题目。
2025-06-23 02:52:39 10.65MB 计算机复试 计算机体系结构
1
广东工业大学计算机学院操作系统课程设计报告和代码源文件,选题为阅读openEuler的源代码,并且根据阅读到的源代码进行验证程序的编写。本人的报告为全班最高分97分,值得参考!!!
2025-06-22 22:40:16 10.24MB 操作系统 广东工业大学 课程设计
1
计算机视觉(模型、学习和推理)Algorithms算法伪代码 AnswerBookletStudents常见问题 Computer vision models, learning and inference CVMmatlab代码
2025-06-22 11:25:00 212.75MB 计算机视觉
1
计算机网络是信息技术领域中的核心部分,它连接了世界各地的设备,使得信息的交换变得便捷而高效。本资源包是针对“计算机网络”课程,采用“自顶向下”学习方法的一套思维导图,旨在帮助大学生进行期末复习。下面将根据提供的文件名,详细解释每个层面的知识点。 1. **计算机网络和因特网.svg** 这一部分涵盖了计算机网络的基础概念,包括网络的定义、分类、工作原理以及因特网的架构。重点讲解了TCP/IP协议族,它是因特网的基础,由应用层、传输层、网络层和链路层四个层次构成。了解这些基本概念对理解网络通信至关重要。 2. **应用层.svg** 应用层位于TCP/IP模型的最顶层,处理用户直接交互的应用程序,如HTTP(超文本传输协议)、FTP(文件传输协议)、SMTP(简单邮件传输协议)等。此部分需要理解各种协议的工作机制,以及它们如何在实际场景中实现数据的传输和交互。 3. **运输层.svg** 运输层主要负责端到端的数据传输,确保数据的可靠传输。其中,TCP(传输控制协议)提供面向连接、可靠的传输服务,而UDP(用户数据报协议)则是一种无连接、不可靠的服务。理解TCP的三次握手、四次挥手以及拥塞控制策略,以及UDP的特点和应用场景,是运输层学习的重点。 4. **网络层.svg** 网络层的核心任务是路由选择,通过IP(互联网协议)进行数据包的分组转发。这一层需要掌握IP地址的结构、子网掩码、CIDR(无类别域间路由)以及路由器如何根据路由表进行数据包的转发。同时,还要理解IP的两种版本:IPv4和IPv6,以及它们的区别和过渡策略。 5. **链路层和局域网.svg** 链路层负责同一物理网络中的节点间通信,如以太网。这部分内容包括MAC地址、CSMA/CD(载波监听多路访问/冲突检测)协议、帧的封装与解封装等。局域网部分则探讨了LAN的不同类型,如Ethernet、WiFi等,以及它们的拓扑结构和介质访问控制方法。 6. **5.1 链路层和局域网.svg、5.2 链路层和局域网.svg** 这两个文件可能重复或扩展了链路层和局域网的内容,可能涉及到更深入的协议,如ARP(地址解析协议)用于将IP地址转换为MAC地址,或者VLAN(虚拟局域网)用于分割局域网,提高网络管理效率。 通过这些思维导图,学生可以系统地梳理计算机网络的知识体系,对每个层次有清晰的理解,并且能够更好地应对期末考试中的各种问题。这些图表以直观的方式呈现了复杂的网络概念,有助于加深记忆,提高学习效率。在复习过程中,结合实例和实际操作,将理论知识与实践相结合,能更有效地掌握计算机网络的精髓。
2025-06-21 17:24:50 8.61MB
1