"基于PLC的智能排号系统设计" 本文介绍了基于PLC的智能排号系统设计,旨在解决传统排队问题,通过模仿需要办理业务的人员排队,以实现以取号、等待、叫号等功能为一体。智能排号系统的设计理论基础是基于分布式控制系统理论,主要包括主屏显示器、窗口显示器和智能叫号系统器组成立体网络式通信控制体系。 智能排号系统可以为客户创造平等、有序良好的等候环境,使顾客避免不必要的麻烦;使工作人员可以缓解压力,从而避免不必要的工作失误,提高工作人员工作效率;为管理者能更好地管理工作人员和掌握客户的动态信息,有利于合理安排职位,更好地进行管理,有利于提高工作人员的主动性,改善服务人员服务态度,而且能提高企业服务质量和增强企业自身管理水平,给顾客留下好感,增强自身可信度,为企业带来更多的收益。 PLC系统是一种基于微处理器的可编程控制器,可以实现自动化控制、数据采集、监控和远程通信等功能。PLC系统在智能排号系统中的应用可以实现智能化的排号管理,提高工作效率,减少人工错误,提高客户满意度。 智能排号系统的设计包括硬件设计和软件设计两部分。硬件设计主要包括主屏显示器、窗口显示器和智能叫号系统器等组件的选择和设计;软件设计主要包括PLC系统的编程、排号管理算法的设计和数据库设计等。 PLC系统的编程是智能排号系统的核心部分,通过PLC系统的编程,可以实现智能化的排号管理,自动化的叫号和显示等功能。PLC系统的编程语言主要包括Ladder图形语言、Function Block语言和Structured Text语言等。 排号管理算法是智能排号系统的关键部分,通过算法的设计,可以实现智能化的排号管理,避免人工错误,提高工作效率。数据库设计是智能排号系统的重要组成部分,通过数据库的设计,可以实现客户信息的存储和管理,提高系统的可靠性和安全性。 本文还介绍了智能排号系统的发展状态及对其应用的前景展望;还介绍了PLC的发展历史和工作原理。论文最后还对基于PLC智能排号系统的总体设计、工作原理进行了总结和分析。 关键词:智能排号;PLC;数码显示。 本文介绍了基于PLC的智能排号系统设计,旨在解决传统排队问题,提高客户满意度和工作效率,提高企业服务质量和自身管理水平。
2025-09-06 17:08:24 531KB
1
### 单端反激式开关电源设计步骤详解 反激式开关电源因其结构简单、成本低廉及适用范围广泛等特点,在小功率电源系统中被广泛应用。本文将基于给定的文件内容,详细介绍单端反激式开关电源的设计步骤,并对每个步骤进行深入解析。 #### 一、电源输出功率 首先需确定电源的输出功率 \( P_O \),这一步骤至关重要,因为输出功率直接影响到后续设计中的元件选择。公式如下: \[ P_O = \sum_{i} (V_{OUT_i} \times I_{OUT_i} + V_{D_i}) \] 其中,\( V_{D_i} \) 为第 i 路输出整流二极管的正向导通压降。通常情况下,可以选择肖特基二极管或超快恢复二极管。如果采用肖特基二极管,则 \( V_{D_i} \) 大约为 0.4V;如果是超快恢复二极管,则 \( V_{D_i} \) 大约为 0.6V。 #### 二、输入端电容 输入端电容 \( C_{in} \) 的选择也非常重要,它直接影响到电源的稳定性。一般来说,其最小值应满足以下条件: \[ C_{in} \geq (2 \sim 3) \times \frac{P_O}{f_L} \] 这里,\( f_L \) 是交流输入电压的频率。 #### 三、输入最小直流电压 接下来需要确定输入的最小直流电压 \( U_{dcmin} \),该值可以通过以下公式计算得出: \[ U_{dcmin} = \sqrt{2} \times U_{acmin} - \frac{2 \times P_O \times t_C}{f_L \times C_{in} \times \eta} \] 其中,\( t_C \) 为整流桥导通时间,通常取值为 3.2ms;\( \eta \) 表示电源效率。 #### 四、输入最大直流电压 输入的最大直流电压 \( U_{dcmax} \) 直接由交流输入最大电压 \( U_{acmax} \) 确定: \[ U_{dcmax} = \sqrt{2} \times U_{acmax} \] #### 五、最大占空比 在选择PWM控制芯片时,为了确保系统的稳定性,最大占空比 \( D_{max} \) 通常不超过 0.5。 #### 六、反激电压 反激电压 \( U_{OR} \) 可以通过以下公式计算: \[ U_{OR} = U_{dcmin} + U_{ds} - D_{max} \times (U_{dcmin} + U_{ds}) \] 这里,\( U_{ds} \) 为开关管饱和导通压降,一般取值为 10V。 #### 七、开关管漏源最低耐压 开关管的漏源最低耐压 \( U_{mos-min} \) 可以通过以下经验公式估算: \[ U_{mos-min} = 1.4 \times U_{dcmax} + 1.5 \times U_{OR} \] #### 八、工作模式与电流纹波峰值比 根据实际应用需求,可以设定变换器的工作模式为电流连续模式(CCM)或电流断续模式(DCM)。不同的工作模式对应不同的电流纹波峰值比 \( K_{RP} \): - CCM 模式:\( K_{RP} < 1 \) - DCM 模式:\( K_{RP} = 1 \) #### 九、确定开关频率 开关频率 \( f \) 的选择需要考虑所选芯片的支持能力和开关管的开关能力。通常,开关频率的选择会影响到效率和成本之间的权衡。 #### 十、选择磁芯 磁芯的选择对于整个电源的性能有着至关重要的影响。面积乘积法是一种常用的计算方法,可以根据不同的工作模式计算出面积乘积 \( A_p \): - CCM 模式: \[ A_p \geq \frac{1.5}{1-D_{min}} \times \frac{P_O}{f \times B_{m} \times J_k \times \eta} \] - DCM 模式: \[ A_p \geq \frac{1.5}{D_{max}} \times \frac{P_O}{f \times B_{m} \times J_k \times \eta} \] 这里,\( D_{min} \) 为最小占空比;\( B_{m} \) 为最大磁通密度;\( J_k \) 为电流密度。 #### 十一、确定电流平均值 原边电流平均值 \( I_{avgp} \) 的计算公式如下: \[ I_{avgp} = \frac{P_O}{U_{dcmax} \times D_{max} \times \eta} \] #### 十二、确定原边峰值电流 原边峰值电流 \( I_{pkp} \) 的计算公式为: \[ I_{pkp} = I_{avgp} \times \left(2 + \frac{1}{K_{RP}}\right) \] #### 十三、确定开关管能承受最小电流 开关管能承受的最小电流 \( I_{mos-min} \) 计算公式为: \[ I_{mos-min} = 1.5 \times I_{pkp} \] #### 十四、确定原边有效值电流 原边有效值电流 \( I_{rmsp} \) 的计算公式如下: \[ I_{rmsp} = I_{pkp} \times \sqrt{\left(\frac{1}{3} + \frac{1}{K_{RP}^2}\right)} \] #### 十五、确定初级电感量 初级电感量 \( L_p \) 的计算公式为: \[ L_p = \frac{U_{dcmax} \times D_{max}}{f \times I_{pkp} \times K_{RP}} \] #### 十六、确定最大磁通密度 最大磁通密度 \( B_m \) 一般取值范围为 0.2T~0.3T,以避免磁芯饱和。 #### 十七、原边匝数 原边匝数 \( N_p \) 的计算公式为: \[ N_p = \frac{1000 \times L_p}{I_{pkp} \times A_e \times B_m} \] 其中,\( A_e \) 为磁芯的有效截面积。 #### 十八、副边匝数 副边匝数 \( N_{si} \) 的计算公式为: \[ N_{si} = N_p \times \frac{V_{OUT_i} + V_{D_i}}{U_{OR}} \] #### 十九、偏置绕组匝数 偏置绕组匝数 \( N_B \) 的计算公式为: \[ N_B = N_p \times \frac{V_B}{U_{OR}} \] 这里,\( V_B \) 为偏置电压。 通过以上步骤,我们可以较为完整地完成单端反激式开关电源的设计。每一步都紧密关联,需要综合考虑电源的各项指标和实际应用需求来做出最佳选择。
2025-09-06 16:50:50 259KB 开关电源 设计步骤
1
北京大学软件与微电子学院的算法分析与设计课件是一份宝贵的学习资源,由著名教授郁莲主讲。这个课程深入探讨了计算机科学中至关重要的算法领域,涵盖了多种经典的算法思想和方法,对于提升编程能力、解决复杂问题以及优化计算效率具有重要作用。 线性规划是一种在数学优化中寻找变量最优化(最大或最小)的方法,常用于处理资源有限的情况。课程可能讲解了线性不等式系统、标准形式、单纯形法以及图解法,帮助学生理解如何在多维空间中找到最优解。 动态规划是算法设计的一个核心概念,它通过将问题分解为相互重叠的子问题来解决。课程可能涵盖了背包问题、最长公共子序列、最短路径问题等经典案例,强调了记忆化搜索和状态转移方程的重要性。 分治算法是将大问题分解为相似的小问题进行解决,然后合并结果。例如,快速排序、归并排序和大整数乘法等都是分治策略的应用。学习这部分内容能帮助理解如何优雅地处理复杂度高的问题。 图论是研究图的结构和性质的数学分支,其在算法设计中有着广泛的应用。课程可能涉及了最小生成树(如Prim算法和Kruskal算法)、最短路径算法(如Dijkstra算法和Floyd-Warshall算法)以及网络流问题,这些都是解决实际问题如物流、通信网络和社交网络分析的关键工具。 排序与选择算法是计算机科学的基础,如快速排序、归并排序、堆排序和选择算法(如快速选择和中位数选择)。这些算法在数据处理和数据分析中不可或缺,对理解算法效率和复杂度分析至关重要。 贪心算法是一种局部最优策略,每次选择当前最优解,期望最终达到全局最优。它在解决资源分配、任务调度等问题时非常有效,但并不适用于所有问题。课程可能通过霍夫曼编码、Prim's最小生成树算法等实例来讲解贪心算法的应用和局限性。 网络流算法则是在网络中寻找最大流或最小割,常见于运输问题和电路设计。Ford-Fulkerson方法和Edmonds-Karp增广路径算法是其中的经典算法,它们在求解网络中的最大传输能力方面十分关键。 通过这些课件,学习者不仅可以掌握各种算法的实现,还能理解它们背后的数学原理和应用场景,为成为优秀的软件工程师或研究员打下坚实基础。同时,郁莲教授的讲解必定会结合实际问题,使理论知识更具实践价值。这份课件对于想要深入理解算法的个人或教育机构来说,无疑是宝贵的教育资源。
2025-09-06 13:03:16 19.84MB 动态规划
1
描述 此参考设计基于 LMG1210 半桥 GaN 驱动器和 GaN 功率的高电子迁移率晶体管 (HEMT),实现了一款数兆赫兹功率级设计。凭借高效的开关和灵活的死区时间调节,此参考设计不仅可以显著改善功率密度,同时还能实现良好的效率和较宽的控制带宽。此功率级设计可广泛应用于众多需要快速响应的空间受限型应用,例如 5G 电信电源、服务器和工业电源。 特性 基于 GaN 的紧凑型功率级设计,具有高达 50MHz 的开关频率 适用于高侧和低侧的彼此独立的 PWM 输入,或具有可调节死区时间的单一 PWM 输入 最小脉冲宽度为 3ns 300V/ns 的高压摆率抗扰性 驱动器 UVLO 和过热保护
2025-09-06 12:10:11 2.78MB 电路方案
1
matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随
2025-09-06 11:16:17 880KB matlab 源码
1
基于FPGA技术的AMI编码器与译码器设计:交替信号的编解码原理与实现细节,基于FPGA的AMI编解码器设计:详细阐述编码原理与实现流程,附设计文档、仿真说明及注释代码,基于FPGA的AMI编码器和译码器设计: AMI编码:将传输中的0仍用0表示,将传输中的1依次由“+1”和“-1”交替表示。 AMI解码+编码的逆过程,回复原始编码。 包含详细的设计文档、仿真说明,代码里有详细的说明注释,保证可以理解设计原理和设计思路,理解AMI的编解码实质。 ,基于FPGA的AMI编码器设计; AMI解码器设计; 交替码; 编解码实质; 详细设计文档; 仿真说明; 注释说明。,基于FPGA的AMI编解码器设计:详解交替信号传输与复原原理
2025-09-05 23:02:55 371KB edge
1
如何使用Jmag进行电机电磁振动噪音的联合仿真及偶合计算。内容涵盖了一个1个半小时的详细教学视频、72页的操作教程和多个仿真实例。首先,教学视频分为四个部分:Jmag软件的基础介绍、电机模型的建立与参数设置、电磁振动噪音的仿真分析以及偶合计算的具体案例。其次,操作教程提供了从软件界面到具体仿真步骤的详尽指导,确保用户能够快速上手并熟练掌握各项功能。最后,通过具体的仿真实例,展示了整个仿真流程及其实际应用效果。 适合人群:电机设计工程师、科研人员及相关领域的学生。 使用场景及目标:适用于需要深入了解和掌握Jmag软件在电机电磁振动噪音联合仿真及偶合计算方面的专业人士,旨在提高电机设计水平,降低电磁振动噪音,增强电机性能和可靠性。 其他说明:本文不仅提供了理论知识,还结合了大量实战经验,使读者能够在实践中不断巩固所学内容。
2025-09-05 20:03:31 305KB
1
内容概要:本文介绍了基于Matlab GUI的光波偏振仿真实验平台的设计与实现。首先,文章简述了光波偏振现象及其重要性,接着详细讲解了如何利用Matlab 2016a及以上版本提供的电磁场仿真工具箱和GUI设计功能构建实验平台。文中展示了具体的GUI设计流程,包括界面布局设计、控件创建以及关键代码解析,如初始化电磁场参数、模拟光波传播和偏振、将仿真结果显示在GUI界面上等功能。最后,文章展示了该平台的效果,强调了其在教育和研究领域的应用价值。 适合人群:对电磁场理论和光波偏振感兴趣的科研人员、高校教师、学生以及相关领域的开发者。 使用场景及目标:① 教育培训:作为教学辅助工具,帮助学生更好地理解和掌握光波偏振的概念;② 科研支持:提供一个便捷的实验环境,便于研究人员进行光波偏振的相关研究;③ 技术演示:可用于展示Matlab在科学计算和GUI设计方面的能力。 其他说明:该平台的成功搭建不仅提升了用户对电磁场理论的理解,同时也展示了Matlab在科学计算和图形化界面设计方面的强大能力。
2025-09-05 19:35:15 375KB
1
随着信息技术的发展,医疗行业也在不断地进行数字化升级。在这一过程中,医疗门诊挂号系统的建设显得尤为重要。一个高效、便捷的挂号系统能够极大地提升医疗机构的服务效率,同时也能改善患者的就诊体验。本次分享的资源是一个基于ThinkPHP内核开发的医疗门诊挂号系统后台源码,它不仅适用于学校实训和毕业设计,同时也具备一定的商业应用价值。 该系统的开发框架选择了PHP中非常流行的ThinkPHP框架,它是一个快速、简单的轻量级PHP开发框架。ThinkPHP以其轻量级、简单易用、扩展性强等特点,深受广大开发者的喜爱。在医疗门诊挂号系统的后台开发中,使用ThinkPHP框架能够快速搭建起系统架构,同时也便于后续的维护和升级。 系统后台的源码提供了完整的功能模块,涵盖了用户管理、挂号管理、预约管理、医生排班、药品管理等多个方面。这样的设计不仅让系统具有全面的功能,还能够在实际应用中灵活应对不同的业务需求。例如,在用户管理模块中,可以实现患者信息的录入、查询、修改和删除等操作。在挂号管理模块中,患者可以通过系统进行在线预约挂号,系统会自动记录挂号信息并生成预约单。同时,医生排班模块能够帮助医院管理者合理安排医生的工作时间,提高医疗资源的使用效率。 再者,本系统的开发还充分考虑了安全性的问题。在实际的医疗环境中,患者信息和医疗数据的保密性至关重要。因此,源码在设计时加入了相应的安全措施,如权限控制、数据加密和安全验证等,以确保患者和医疗数据的安全。此外,系统还能够对接医院现有的其他医疗系统,实现数据的互通互联,进一步提升医疗工作的效率和质量。 值得一提的是,该源码还适用于学术研究和毕业设计。对于计算机相关专业的学生来说,通过实际的项目开发可以加深对课程知识的理解和应用。源码中包含的模块化设计和编码规范,可以帮助学生学会如何构建一个完整的商业级应用系统。此外,学生在使用该源码进行毕业设计时,还可以在此基础上进行二次开发,例如优化界面设计、增加新的功能模块,或者进行性能调优等。 这份源码不仅是一个实用的医疗门诊挂号系统后台,同时也为学习ThinkPHP框架的开发者提供了一个很好的实践案例。通过学习和使用这份源码,开发者可以加深对PHP开发和系统设计的理解,提高自身的开发技能。而对于医疗机构而言,采用这样一个成熟的系统,可以有效地提升工作效率,改善患者的就医体验,具有很高的实用价值和推广意义。
2025-09-05 13:35:30 28.54MB 整站源码 学校实训 毕业设计 论文模板
1
内容概要:本文档提供了关于10bit SAR ADC电路的详尽设计与仿真指导,涵盖200多页的设计文档和仿真资源。主要内容包括详细的电路设计说明、Virtuoso仿真环境配置、以太网和PLL电路实例、以及进阶ADC资源。文档不仅介绍了经典电荷重分配架构的SAR ADC设计,还包括优化的DAC阵列开关控制、电荷注入补偿机制、高精度电容布局方法、以及全面的仿真验证策略。此外,还提供了一些高级特性,如以太网PHY参考设计、PLL抖动分离脚本、Pipeline和Sigma-Delta ADC实现等。 适合人群:从事模拟电路设计和仿真的工程师和技术人员,尤其是对ADC设计感兴趣的从业者。 使用场景及目标:适用于希望深入了解SAR ADC设计原理及其仿真验证的技术人员。目标是帮助用户掌握从基本设计到复杂仿真的全过程,提高ADC设计的成功率和可靠性。 其他说明:文档中包含了丰富的实战经验和技巧分享,如动态逻辑控制、电容布局优化、蒙特卡洛仿真设置等,有助于解决实际项目中的常见问题并提升设计质量。
2025-09-05 09:50:55 1.08MB
1