CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
2025-11-03 21:14:22 16KB matlab
1
基于MATLAB的鱼类品种识别系统设计(任务书+开题报告+文献综述+仿真+毕业论文+答辩PPT)视频演示地址:https://www.bilibili.com/video/BV1cQWrzAEdR/?vd_source=6ea1beb17174384a0b3d09d6d35580f6
2025-11-01 17:18:18 19.63MB 毕业设计
1
“基于YOLO V8的金属表面缺陷检测识别系统——从源代码到实际应用的完整解决方案”,"基于YOLO V8的金属表面缺陷智能检测与识别系统:Python源码、Pyqt5界面、数据集与训练代码的集成应用报告及视频演示",基于YOLO V8的金属表面缺陷检测检测识别系统【python源码+Pyqt5界面+数据集+训练代码】 有报告哟 视频演示: 金属表面缺陷的及时检测对于保障产品质量和生产安全至关重要。 然而,传统的人工检测方法往往效率低下、耗时长,并且容易受主观因素影响。 为了解决这一问题,我们提出了基于深度学习技术的金属表面缺陷检测系统。 本项目采用了Yolov8算法,这是一种高效的目标检测算法,能够在图像中快速准确地检测出各种目标。 我们将其应用于金属表面缺陷的检测,旨在实现对金属表面缺陷的自动化检测和识别。 数据集的选择是本项目成功的关键之一。 我们收集了大量金属表面缺陷图像,这些数据为模型的训练提供了充分的支持,确保了模型在各种情况下的准确性和稳定性。 在训练过程中,我们采用了迁移学习的方法,利用预训练的Yolov8模型,并结合我们的金属表面缺陷数据集进行了进一步的微调和优化。
2025-10-28 12:51:55 2.27MB
1
【基于Android的饮食识别系统】是一种利用移动设备(如智能手机)上的摄像头拍摄食物照片,并通过图像处理技术来识别食物种类的应用。在这个系统中,SIFT(尺度不变特征变换)算法起到了关键作用,它是一种强大的特征检测和描述方法,能够帮助系统在不同尺度和旋转下识别图像中的关键特征。 SIFT算法的详细过程包括以下几个步骤: 1. **尺度空间极值检测**:通过高斯差分金字塔构建尺度空间,寻找在不同尺度下的局部极值点,这些点可能对应于图像中的边缘、角点或其他显著特征。 2. **关键点定位**:确定找到的极值点的位置,确保它们是稳定的,不受图像微小变化的影响。这通常涉及到去除噪声和次优点的过程。 3. **关键点定向**:为每个关键点分配一个方向,使得它们在旋转变化下也能保持不变。这通常通过计算关键点周围的梯度方向直方图实现。 4. **关键点描述符生成**:在每个关键点周围提取一个局部区域,并计算该区域的细节信息,生成描述符。描述符应具有旋转不变性和一定程度的平移不变性。 5. **描述符匹配**:将待识别食物照片的SIFT描述符与数据库中的已知食物样本匹配,找到最相似的描述符,从而识别出食物种类。 在Android平台上实现这样的系统,通常需要以下技术: - **Java**:作为Android应用的主要开发语言,用于编写用户界面、逻辑控制以及与设备硬件的交互。 - **Android SDK**:提供了一系列工具和API,开发者可以使用它们来访问摄像头、处理图像、创建图形用户界面等。 - **JNA(Java Native Access)**:由于SIFT算法的计算量大,效率要求高,通常会用到C或C++编写的高性能库。JNA允许Java代码直接调用这些本地库,无需编写JNI(Java Native Interface)代码。 在实际应用中,由于SIFT算法的计算复杂度,可能导致识别速度较慢。为了提高性能,可以考虑以下优化策略: 1. **并行计算**:利用多核CPU或者GPU进行并行处理,加速SIFT特征的计算。 2. **特征匹配优化**:采用更高效的匹配算法,如BFMatcher(Brute Force Matcher)或FLANN(Fast Library for Approximate Nearest Neighbors)。 3. **减少特征数量**:适度降低关键点的数量,或者简化描述符,以平衡识别准确率和速度。 4. **预处理图像**:对输入图像进行简单的预处理,如缩放、降噪,以减少后续处理的负担。 随着技术的发展,未来可能有更先进的图像识别算法和硬件支持,如深度学习模型(如卷积神经网络CNN),这些技术有望进一步提升饮食识别系统的性能和用户体验。
2025-10-22 17:02:35 1.82MB android sift java
1
文本分类识别系统Python,基于深度学习CNN卷积神经网络算法.文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面
2025-10-15 21:04:05 2KB tensorflow tensorflow python 深度学习
1
假冒 论文“谁是真正的鲍勃?说话人识别系统的对抗攻击”的源代码。 演示网站: (包括一分钟的视频预览) 我们的论文已被。 纸质链接 。 引用我们的论文如下: @INPROCEEDINGS {chen2019real, author = {G. Chen and S. Chen and L. Fan and X. Du and Z. Zhao and F. Song and Y. Liu}, booktitle = {2021 2021 IEEE Symposium on Security and Privacy (SP)}, title = {Who is Real Bob? Adversarial Attacks on Speaker Recognition Systems}, year = {2021}, volume = {},
1
在当今信息爆炸的时代,利用计算机程序对生物物种进行自动识别已经成为了研究热点。尤其是在动物识别领域,智能系统能够协助生态学家、野生动物保护者以及动物园管理者进行物种分类、数量统计、栖息地监测等工作。本文将详细介绍一个基于Python语言及其图形用户界面库PyQT5的产生式动物识别系统的设计与实现。 Python作为一种高级编程语言,因其简洁的语法和强大的库支持,被广泛应用于数据分析、机器学习、人工智能等领域。而PyQT5作为Python的GUI开发库,它允许开发者构建具有原生外观和感觉的桌面应用程序。PyQT5的模块化结构使得它成为开发复杂的GUI应用程序的理想选择。 在本项目中,产生式动物识别系统旨在利用机器学习算法,特别是基于深度学习的图像识别技术,对输入的动物图像进行自动分类。系统通过学习大量的动物图像数据集,能够自动识别不同种类的动物,包括哺乳动物、鸟类、鱼类和昆虫等。该系统的开发过程涉及以下几个关键技术步骤: 1. 数据采集与预处理:系统首先需要收集不同种类动物的图像数据。这些数据可能来源于互联网、专业数据库或者实际的野外考察。收集到的数据需进行预处理,如图像裁剪、缩放、归一化等,以适应模型训练的要求。 2. 模型构建与训练:在本项目中,很可能采用的是卷积神经网络(CNN)模型,这是图像识别领域的主流技术。模型通过在大量的已标记图像数据上进行训练,学会识别不同动物的特征。 3. GUI设计:PyQT5库被用来设计一个直观的图形用户界面,用户可以通过这个界面上传图像,并获取识别结果。界面设计需简洁明了,方便用户操作。 4. 系统集成与测试:将训练好的模型集成到GUI中,确保用户上传的图像能够被正确处理,并通过模型给出准确的识别结果。系统需要经过严格的测试,以确保其在各种条件下都能稳定工作。 5. 结果展示与交互:系统将识别结果以文本和图像的形式展示给用户,并提供一定的交互功能,如对结果进行保存、查询历史记录等。 基于Python和PyQT5的产生式动物识别系统能够为动物研究和保护工作提供有力的技术支持。它可以大大降低人类专家在物种识别上的工作量,提高识别的效率和准确性。此外,该系统还具有一定的学习和适应能力,随着更多数据的加入和模型的不断优化,其识别性能有望得到进一步提升。 本项目的成功实施,不仅展示了Python编程语言和PyQT5库在实际应用中的强大功能,而且为动物识别技术的发展提供了新的思路。未来,随着深度学习技术的不断进步,我们可以期待产生更加智能和高效的动物识别系统,为生物多样性的研究和保护贡献更多力量。
2025-10-10 11:08:39 15KB Python项目
1
在当今科技迅猛发展的时代,人工智能技术在各行各业的应用越来越广泛。特别是,在计算机视觉领域,动物识别技术已经成为了一个热门的研究方向。基于产生式规则的动物识别系统程序,就是利用产生式系统原理,结合机器学习方法,进行动物图像识别的一种技术。产生式系统是一种以规则为基础的系统,它通过预定义的一系列规则来描述系统中的知识和操作过程。在这种系统中,规则通常具有“如果...那么...”的形式,其中“如果”部分代表了条件,而“那么”部分则代表了在满足这些条件时要执行的操作。 产生式系统在动物识别中之所以受到重视,是因为它能有效地处理复杂的数据,将专家的经验和知识转化为计算机可以理解的规则,进而用于自动识别和分类不同的动物。在这种系统中,识别过程不仅仅是基于图像的表面特征,更重要的是通过规则来理解动物的分类学特征,例如动物的形态、行为习惯、栖息环境等,从而实现更精准的识别效果。 为了实现这一目标,产生式动物识别系统程序通常需要经过几个关键步骤。首先是对动物图像的采集和预处理,这包括了图像的获取、去噪、标准化等一系列工作,为后续的特征提取和分类打下基础。接着是特征提取,这部分工作通过分析图像数据,提取出能够代表不同动物特征的量化信息,如颜色分布、纹理特征、形状描述符等。然后是规则的制定,这一步需要专家知识的参与,将动物识别的知识转化为一套完整的规则集。最后是基于这些规则的识别过程,系统通过匹配输入图像的特征与规则集中的条件,输出相应的识别结果。 由于产生式系统的这些特性,它在处理模式识别问题时表现出很强的灵活性和适应性。它不仅可以处理规则明确、逻辑性强的识别任务,还能在一定程度上适应那些复杂、动态变化的识别场景。这种适应性使得产生式动物识别系统在生态监测、生物多样性调查、野生动物保护等领域有着广泛的应用前景。 然而,任何技术都不是完美无缺的。产生式系统虽然在某些方面表现出色,但也存在一些局限性。比如,规则的制定过程可能较为繁琐,需要大量专家知识的输入,而且对于未知或变异特征的动物识别能力可能不足。为了解决这些问题,研究人员常常会将产生式系统与其他机器学习技术相结合,比如神经网络、支持向量机等,通过多种技术的互补,提高动物识别的准确性和鲁棒性。 基于产生式规则的动物识别系统程序是人工智能领域的一项重要技术,它融合了计算机科学和生物学的多个分支知识,为动物识别提供了一个智能化、自动化的解决方案。随着人工智能技术的不断进步,未来这种系统有望在更多领域展现其强大的应用价值。
2025-10-10 10:15:02 294B 产生式系统 动物识别
1
随着科技的发展,人工智能已经渗透到了我们生活中的方方面面。其中,图像识别与分类技术作为人工智能的重要分支之一,已经被广泛应用于各种领域。在生物多样性保护和野生动物研究领域,图像识别技术也发挥着重要作用,尤其在对野生动物种群的监测和分类上。本次分享的是一个特别针对中国蛇类的识别系统,它采用图像识别与分类的方法,帮助研究人员和爱好者快速识别蛇类,具有重要的科研和教育意义。 该系统的核心是一个训练有素的深度学习模型,这个模型通过学习大量的蛇类图像数据,能够自动识别并分类不同种类的蛇。开发这样的系统,首先需要收集丰富的蛇类图像数据,包括不同种类、不同环境下的蛇类图片。这些图片需要进行预处理,包括调整大小、归一化等操作,以保证模型的输入数据一致性。 在模型的选择上,常用的有卷积神经网络(CNN)等深度学习架构。CNN特别适合处理图像数据,其结构中包含多个层次,可以学习图像的层次特征。一个典型的CNN模型包括卷积层、池化层、全连接层等。在蛇类识别系统中,通过不断迭代训练,CNN能够逐渐掌握蛇类的特征,并最终实现准确的识别和分类。 此外,系统中还可能涉及到一些优化算法和技巧,例如使用数据增强来提高模型的泛化能力,或者应用迁移学习来加速模型的训练过程。数据增强可以通过旋转、翻转、缩放等方式对原始数据进行扩展,使模型在面对不同的蛇类图像时都能够有良好的识别效果。迁移学习则是利用已有的预训练模型,在其基础上进行微调,以适应新的蛇类图像数据集,这样可以减少训练时间并提高模型性能。 在系统开发完成后,为了便于用户使用,通常会提供一个简洁的用户界面。用户可以通过这个界面上传蛇类的图片,系统则会自动进行识别,并给出最可能的蛇类名称和相关的分类信息。这个用户界面可能是一个网页版应用,也可能是一个桌面应用程序,甚至是一个移动应用,取决于开发团队的设计和用户的需求。 对于这样的系统,开发者通常会提供源码,这样其他研究者可以基于这些代码进行进一步的改进或者适应新的应用场景。通过分享源码,还可以促进学术交流,推动整个领域的发展。 在实际应用中,基于图像识别与分类的中国蛇类识别系统可以用于生态学研究、野生动物保护、自然教育等多个方面。通过快速准确地识别蛇类,该系统不仅有助于提高生物多样性监测的效率,还能帮助减少人类与野生动物的冲突,为野生动物的保护工作提供强有力的技术支持。 系统的推广和应用还需要考虑实际的使用环境和用户群体。为了确保系统的准确性和稳定性,除了在模型训练阶段保证数据质量外,还需要在实际使用中不断收集反馈,优化模型性能。此外,对于非专业用户,还需要提供足够的教育和培训资料,使他们能够正确地使用系统,从而达到预期的效果。
2025-09-22 21:15:58 324B 源码 完整源码
1
搜索引擎基于CASME2数据集训练的微表情识别系统_支持摄像头实时检测和图片视频分析_包含面部微表情特征提取与分类算法_采用深度学习框架TensorFlow和Keras实现_集成VGG16.zip
2025-09-21 13:59:54 60.79MB python
1