利用是stm32cubemx实现双极性spwm调制 基于stm32f407vet6_stm32 spwm.rar 视频和文章链接如下: 1.B站(https://www.bilibili.com/video/BV16S4y147hB/?vd_source=b344881caf56010b57ef7c87acf3ec92) 2.CSDN(https://blog.csdn.net/m0_65265936/article/details/126247287) 3.代码工程(https://download.csdn.net/download/m0_65265936/86394301)
2025-09-15 08:19:41 9.81MB
1
TL494是一种由美国德克萨斯州仪器公司(TEXAS INSTRUMENT)生产的脉宽调制(PWM)控制电路,它被广泛应用于开关电源控制器中,以提高电源系统的稳定性和效率。在密封铅酸电池充电器的设计中,TL494被用来实现恒流恒压的充电控制,这对于延长电池的使用寿命至关重要。 TL494芯片内部结构包括一个5V基准电压源、振荡器、两个误差放大器、比较器、触发器、输出控制电路以及输出晶体管和空载时间电路。这些组成部分协同工作,使得TL494能够通过脉冲宽度调制(PWM)的方式精确控制输出电压和电流,从而控制电池的充电状态。 在使用TL494时,需要对外接的振荡电阻和振荡电容进行配置,以确定PWM信号的频率。芯片的管脚配置包括多个端口,如误差放大器输入端、相位校正端、间歇期调整端、振荡器端、接地端、输出晶体管端、电源端和输出控制端等,它们各自承担着不同的功能。例如,输出控制端可用于选择不同的输出模式,而基准电压输出端则为芯片内部或外部的电路提供稳定的5V参考电压。 脉冲调宽调压的原理是基于TL494内部振荡器产生的锯齿形振荡波,这些振荡波被送入PWM比较器,与外部的调宽电压进行比较,从而输出具有特定宽度的脉冲波。该脉冲波的宽度随着调宽电压的变化而改变,进而调节开关管的导通时间(TON),实现输出电压的稳定。 在密封铅酸电池充电器的设计中,充电器工作原理是首先通过大电流恒流充电,随着电池电压的升高,充电器转为恒压充电模式,充电电流逐渐减小。在电池充满后,充电器进入浮充状态以抵消电池自放电的影响。充电过程的每个阶段都对电池的寿命和性能有重要影响。为了确保安全和效率,充电过程通常被设计为包含快充、慢充和涓流充电三个阶段。例如,在12V铅酸电池的充电过程中,当电池电压达到13.5V至13.8V时,充电器会切换到恒压充电状态,以降低充电电流。当电流降至250mA左右时,电池已达到额定容量的100%,此时充电器转为浮充状态,当电池电压下降到13V时,再开始新一轮的大电流充电。 密封铅酸电池由于成本低、容量大,在很多领域中得到广泛的应用。然而,不当的充电方法会导致电池寿命的严重缩短。因此,引入TL494芯片设计的恒流恒压充电器,不仅提高了充电效率,而且通过精确控制充电过程中的电流和电压,延长了电池的使用寿命。 TL494芯片在密封铅酸电池充电器中的应用,展示了其在电源管理方面的重要作用。通过精确控制脉冲宽度,该芯片能够在不同的充电阶段提供适当的电流和电压,从而确保电池在安全和效率之间达到最佳平衡。
1
三电平NPC逆变器SVPWM算法调制与中点平衡控制的Matlab Simulink仿真研究,基于SVPWM算法调制与中点平衡控制的三电平NPC逆变器Matlab Simulink仿真研究,三电平NPC逆变器,使用svpwm算法调制+中点平衡控制 Matlab simulink仿真(2018a及以上版本), ,三电平NPC逆变器; svpwm算法调制; 中点平衡控制; Matlab simulink仿真(2018a及以上版本),三电平NPC逆变器SVPWM调制与中点平衡控制的Matlab Simulink仿真
2025-09-10 09:04:23 99KB
1
**QAM调制技术及其MATLAB实现** QAM(Quadrature Amplitude Modulation,正交幅度调制)是一种高效的数据传输技术,广泛应用于无线通信和有线电视系统中。在QAM调制中,数据被编码为两个正交载波的幅度变化,即同相(I)和正交(Q)通道的幅度。通过这种方式,可以在一个频谱内传输更多的信息,提高了频谱利用率。 MATLAB作为一个强大的数学和信号处理工具,提供了丰富的函数库来模拟和分析QAM调制系统。在"QAM: QAM 16调制-matlab开发"项目中,我们将会关注如何使用MATLAB来生成QAM16调制的同相和正交通道分量。 QAM16是QAM的一种变体,它使用16个不同的符号来表示数据,每个符号携带4比特的信息。这些符号分布在星座图上,星座图是由四个点组成的正方形,每个点代表一个特定的幅度组合。MATLAB中,我们可以用`comm.QAMModulator`对象来实现这一过程: 1. **生成随机二进制序列**:我们需要生成一组随机的二进制数据作为输入信号。这可以通过`randi`函数实现,例如,`data = randi([0,1], N, 1)`可以生成长度为N的二进制序列。 2. **调制过程**:接着,使用`comm.QAMModulator`对象将二进制数据转换为复数QAM16符号。这一步包括将二进制数据映射到星座图上的点,如: ```matlab qamModulator = comm.QAMModulator('ModulationOrder', 16); modulatedSymbols = qamModulator(data); ``` 这里,`ModulationOrder`参数设置为16,表示使用QAM16调制。 3. **生成同相和正交通道分量**:QAM16符号是复数,包含实部(同相分量)和虚部(正交分量)。通过提取这两个部分,我们可以分别得到I和Q信号: ```matlab I = real(modulatedSymbols); Q = imag(modulatedSymbols); ``` 4. **添加噪声**:在实际通信系统中,信号会受到信道噪声的影响。MATLAB中的`awgn`函数可以模拟加性高斯白噪声(AWGN): ```matlab noisyI = I + awgn(I, SNR, 'measured'); noisyQ = Q + awgn(Q, SNR, 'measured'); ``` 其中,`SNR`是信噪比,'measured'选项意味着噪声功率是基于信号功率测量的。 5. **解调**:接收端需要进行解调以恢复原始数据。使用`comm.QAMDemodulator`对象完成此过程: ```matlab qamDemodulator = comm.QAMDemodulator('ModulationOrder', 16); demodulatedData = qamDemodulator([noisyI; noisyQ]); ``` 6. **错误检测与纠正**:通过比较解调后的数据和原始数据,我们可以计算误码率(BER)来评估系统的性能。 在`qamtr1.zip`压缩包中,可能包含了实现以上步骤的MATLAB代码文件,以及可能的辅助函数或示例数据。通过分析和运行这些代码,学习者可以深入理解QAM调制的概念,并熟悉MATLAB在通信系统仿真中的应用。同时,这也是一个很好的实践,帮助开发者提升在信号处理和通信系统设计方面的技能。
2025-09-09 10:41:56 2KB matlab
1
"基于DSP28335的单相全桥逆变器程序:闭环电流控制,SPWM调制,逻辑清晰,详细注释,适合新手学习",基于DSP28335逆变器程序,单相全桥逆变器程序,采用双极性调制 程序逻辑清晰,注释详细,详细到几乎每一句都有注释,对于小白异常友好,有些地方甚至基本原理都补充写明了,百分之99的程序注释不会有我写的这么详细 完整工程文件 采用闭环电流控制,SPWM调制 已上电验证可用,注释详细,逻辑清晰,排版整洁,适合新手学习 另有移相程序看主页,搜索移相程序,或私信我,我发给你链接 开发环境为CCS,适用的DSP型号为TI公司的TMS320F28335,针对其他型号的DSP程序也可以借鉴。 很多编程思路都可以借鉴到其他类型的电力电子变器的闭环控制程序中 包含:程序说明、ADC采样模块、ePWM模块、PID控制、中断等 注释详细,适合新手学习 ,基于DSP28335的;单相全桥逆变器程序;双极性调制;闭环电流控制;SPWM调制;程序逻辑清晰;注释详细;完整工程文件;CCS开发环境;TMS320F28335适用;PID控制;中断;电力电子变换器控制;移相程序。,TMS320F28335单相全桥
2025-09-07 22:22:05 744KB 柔性数组
1
内容概要:本文详细介绍了频率控制(PFM)与占空比控制(PWM)混合调制的LLC全桥谐振变换器闭环仿真模型。LLC全桥谐振变换器因其能够实现软开关、提升效率和降低损耗,在电源领域非常重要。文中通过MATLAB/Simulink搭建了主电路和控制部分,展示了如何根据输出电压和参考电压的误差选择不同的控制模式(PFM、PWM或混合模式),并提供了简化的MATLAB伪代码示例。通过调整谐振元件参数和控制模式切换阈值,可以优化变换器性能。 适合人群:从事电源系统研究的技术人员、高校师生以及对电力电子仿真感兴趣的爱好者。 使用场景及目标:适用于需要深入了解和研究LLC全桥谐振变换器及其控制方式的研究人员和技术开发者,旨在帮助他们掌握PFM与PWM混合调制的具体实现方法,从而提高电源系统的效率。 其他说明:文中提供的MATLAB伪代码为简化版本,实际应用时需根据具体情况进行调整和完善。
2025-09-04 08:47:40 464KB 电力电子 控制系统仿真
1
内容概要:本文详细介绍了双三相SVPWM(空间电压矢量脉宽调制)技术在六相电机控制中的应用。首先解释了双三相SVPWM的基本概念,即通过将六相电流转换为两个独立的α-β坐标系来进行调制。接着深入探讨了坐标变换方法,如扩展版Clarke变换,以及空间矢量分区和占空比计算的具体实现。文中还提供了多个代码示例,涵盖MATLAB、Python和Verilog等多种编程语言,展示了如何在实际工程中实现这些算法。此外,文章讨论了调试过程中常见的问题及解决方案,如矢量方向错误、PWM波形叠加导致驱动板冒烟等问题,并强调了双三相结构的优势,如更好的谐波抑制和容错能力。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者,特别是对SVPWM调制技术和多相电机感兴趣的读者。 使用场景及目标:适用于需要提高电机性能的应用场景,如电动汽车、工业自动化等领域。主要目标是帮助读者理解并掌握双三相SVPWM的工作原理和实现方法,从而能够应用于实际项目中。 其他说明:文章不仅提供了理论知识,还包括了许多实用的代码片段和调试技巧,有助于读者更好地理解和实践这一复杂的调制技术。
2025-09-03 21:31:20 578KB
1
COMSOL—固体超声导波在黏弹性材料中的仿真 模型介绍:激励信号为汉宁窗调制的5周期正弦函数,中心频率为200kHz,通过指定位移来添加激励信号。 且此模型是运用了广义麦克斯韦模型来定义材料的黏弹性。 版本为5.6,低于5.6的版本打不开此模型 COMSOL仿真软件在工程领域的应用非常广泛,尤其是在涉及多物理场问题的解决中,它提供了一个强大的仿真环境。本次分享的主题是“固体超声导波在黏弹性材料中的仿真模型”,这一模型的创建和应用,为工程师和研究人员提供了一个分析和理解固体材料在超声波作用下的复杂行为的新视角。 该模型的核心在于使用了汉宁窗调制的5周期正弦函数作为激励信号,中心频率设定为200kHz。汉宁窗是一种时域窗函数,它能够减少频谱泄露,提高信号分析的准确度,特别适合于有限长度信号的频谱分析。而正弦函数作为激励信号是基于其在波动学中的重要性,能够产生稳定的周期性波动,对于研究波动传播特性非常有帮助。在该模型中,通过指定特定的位移来添加激励信号,这允许研究人员更精细地控制和研究超声波在材料中的传播效应。 模型的另一个关键特性是采用了广义麦克斯韦模型来描述材料的黏弹性行为。黏弹性材料是介于纯粹的弹性体和黏性体之间的一类材料,它们在受力后会发生变形,且具有时间和速率相关的恢复特性。广义麦克斯韦模型是描述这类材料特性的常用模型之一,它通过一系列串联或并联的弹簧和阻尼器(代表弹性特性和黏性特性)来模拟材料的力学响应。在仿真中应用这一模型,可以更准确地模拟材料在超声波作用下的动态响应,从而为分析超声波在不同黏弹性材料中的传播特性提供科学依据。 此外,该仿真模型的版本为COMSOL 5.6,它是一个功能强大的多物理场仿真软件,能够模拟从流体动力学到电磁场、声学、结构力学等多个物理领域的问题。5.6版本是该软件的一个较新版本,它在用户界面、求解器性能和新功能方面均有所提升,这为创建复杂的多物理场模型提供了更多的可能性和便利。值得注意的是,该模型不能在5.6版本以下的COMSOL软件中打开和运行,这意味着使用时需要注意软件版本的兼容性问题。 通过相关文件的名称列表可知,该仿真模型还包括了一系列的文档和说明,如“固体超声导波在黏弹性材料中的仿真引言在固.doc”和“固体超声导波在黏弹性材料中的仿真模型介绍.html”等,这些文档提供了模型的详细理论背景、应用场景以及操作指导,对于理解和运用该模型至关重要。 通过运用COMSOL软件的仿真能力,结合汉宁窗调制的激励信号以及广义麦克斯韦模型来定义黏弹性材料,研究者可以深入研究固体超声导波在不同黏弹性材料中的传播规律和特点。这不仅能够帮助改进材料的性能,还能为设计更有效的超声波应用提供理论支持。同时,随着软件版本的不断更新,未来的仿真模型可能会更加复杂和精确,为工程应用带来新的突破。无论是在材料科学研究、声学工程设计还是在无损检测领域,这种仿真技术都具有极大的应用价值。
2025-09-02 16:52:15 360KB
1
基于比例谐振(PR)和比例积分(PI)双环控制的单相PWM整流器的MATLAB仿真模型。该模型实现了电压和电流的双闭环控制,其中电压环采用PI控制器稳定直流母线电压,电流环采用PR控制器精确跟踪交流波形。调制策略采用了SPWM,确保了输入电压和电流的同相位以及低谐波含量。仿真结果显示,在输入电压为AC220V、输出电压为DC400V、负载为10kW的情况下,功率因数达到0.9999以上,谐波含量小于1%。文中还提供了关键参数的选择依据和注意事项,附带了相关参考文献。 适合人群:电力电子工程师、MATLAB仿真开发者、高校师生及相关研究人员。 使用场景及目标:适用于需要进行单相PWM整流器性能评估和优化的研究项目,旨在提高系统的功率因数并降低谐波含量。 其他说明:模型下载包中包含了详细的参考论文,有助于进一步深入理解和改进控制策略。
2025-08-25 23:15:43 416KB MATLAB SPWM调制
1
基于比例谐振控制与SPWM调制的单相PWM整流器双环控制MATLAB仿真研究,基于比例谐振控制与SPWM调制的单相PWM整流器双环控制MATLAB仿真研究,PR与PI双环控制单相PWM整流器 MATLAB仿真模型 simulink (1)基于比例谐振控制的单相PWM整流器MATLAB仿真模型; (2)电压、电流双闭环控制,电压环采用Pl,电流环采用PR,实现电流完美跟踪; (3)调制策略采用SPWM; (4)输入电压电流同相位,仿真功率因数大于0.9999,接近1;(5)输入电流低谐波,仿真谐波含量0.97%,<1 (6)仿真工况为输入电压AC220V,输出电压DC400v,负载10kW;(7)仿真模型带参考lunwen。 ,PR与PI双环控制; 单相PWM整流器; MATLAB仿真模型; Simulink; 比例谐振控制; 电压电流双闭环控制; SPWM调制策略; 输入电压电流同相位; 仿真功率因数; 输入电流低谐波; 仿真工况参数,基于双环控制与PR-PI策略的单相PWM整流器的高效MATLAB仿真模型研究
2025-08-25 23:05:48 1.16MB
1