标题中的“yolo行人跌倒检测数据集”指的是一个用于训练和评估YOLO(You Only Look Once)模型的数据集,该模型专门设计用于检测行人在图像中的跌倒情况。YOLO是一种实时目标检测系统,因其高效性和准确性在计算机视觉领域广泛应用。 YOLO,即You Only Look Once,是一个端到端的深度学习框架,它能够直接从原始图像中预测出边界框和类别概率,从而实现对目标的快速检测。YOLO的核心在于它的网络架构,通常包括卷积神经网络(CNN)层,用于特征提取,以及后续的检测层,用于生成边界框和分类得分。 数据集是机器学习和深度学习项目的基础,这个数据集包含1440张图片,每张图片都与相应的txt格式标注文件关联。txt标注文件通常包含了每个目标对象的边界框坐标和类别信息。对于行人跌倒检测,这些标注可能详细指明了跌倒行人的位置、大小以及状态(如跌倒还是站立)。 在YOLOv8这一标签中,我们可以推断这个数据集可能是基于较新的YOLO版本进行训练或测试的。YOLO的每个版本都有其独特的改进和优化,比如更快的速度、更高的精度或者更少的计算资源需求。YOLOv8可能引入了新的网络结构、损失函数或是训练策略,以提高对跌倒行人的识别能力。 至于数据集的使用,通常包括以下几个步骤: 1. 数据预处理:将图片和对应的txt标注文件加载到内存中,可能需要进行归一化、缩放等操作,使其适应模型的输入要求。 2. 划分数据集:将数据集分为训练集、验证集和测试集,用于模型训练、参数调整和性能评估。 3. 模型训练:使用训练集对YOLO模型进行训练,通过反向传播更新权重,以最小化预测结果与实际标注之间的差距。 4. 模型评估:使用验证集监控模型在未见过的数据上的性能,避免过拟合。 5. 超参数调整:根据验证集的表现调整模型的超参数,如学习率、批次大小等。 6. 最终测试:最后在独立的测试集上评估模型的泛化能力,确保模型在新数据上的表现良好。 总结来说,这个数据集是针对行人跌倒检测的,可以用于训练或改进YOLO模型,特别是其最新版本YOLOv8,以提高在现实世界场景中检测跌倒事件的能力。通过合理的数据处理和模型训练,可以构建一个对行人的安全起到预警作用的应用,尤其适用于监控摄像头等安全系统中。
2025-06-24 15:18:11 65.3MB 数据集 yolo
1
跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据集数据集数据集跌倒检测数据
2024-05-03 14:09:58 289.16MB 数据集 毕业设计
1
跌倒检测和识别1:跌倒检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/130184256 跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/130250738 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250824 跌倒检测和识别4:C++实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250838
2024-03-07 18:57:58 765B 跌倒检测 摔倒检测
1
视频链接如下: https://www.bilibili.com/video/BV16Z4y127w3/?vd_source=6ea7a224dd878fde411995c70d3c5adb#reply118347089152 看好多人要数据集,可能看不到,就存在这里吧。
2023-03-11 16:47:12 288.74MB 数据集 目标检测 yolo
1
1、YOLOv7行人跌倒检测训练权重 ,附有各种训练曲线图,可使用tensorboard打开训练日志 2、classes: fall; 3、包括数据集,标签格式为VOC和YOLO两种 4、检测结果和数据集参考:https://blog.csdn.net/weixin_51154380/article/details/127165057?spm=1001.2014.3001.5502
2022-11-29 11:28:47 717.25MB 跌倒检测数据集 YOLOv7行人跌倒检测
跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等
1
UMAFall:跌倒检测数据集(19组移动痕迹).7z
2022-07-14 16:05:07 156.5MB 数据集
复杂场景下,跌倒检测数据集。图片来源互联网,结合了多个数据集进行统一更名,重新调整标注,消除重复图片,共计6800张,标签文件为xml格式。只有fall一个标签。文档里边提供批量更名的脚本,批量修改标签名字的脚本。数据集的预处理工作不容易,花了很多的功夫精心挑选的数据。
2022-07-06 19:14:02 331.26MB 跌倒数据集
已由DK数据工作室整理好,训练集和验证集也已经划分好,接近500张照片,每张照片带有txt格式的标注,直接适用于YOLO目标检测项目
2022-07-01 17:07:39 49.42MB 跌倒检测 Yolo 目标检测 行为检测
1、YOLO行人跌倒检测数据集,7500多张使用lableimg标注软件,标注好的真实场景的高质量图片数据,图片格式为jpg,标签有两种,分别为VOC格式和yolo格式,分别保存在两个文件夹中,可以直接用于YOL摔倒的行人识别,可以区分和识别到跌倒的行人和正常的行人,数据场景丰富,类别名为跌倒fall和正常状态的行人person,一共两个类别 2、数量:7500 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743