多机器人智能体编队控制领域的多种方法及其MATLAB代码实现。具体涵盖了基于图论法、基于距离和方位的编队控制、一致性领航跟随编队(攻防)、基于拓扑图与领航跟随的编队控制以及一致性编队的方法。每种方法都通过具体的MATLAB代码实现了编队控制,确保编队的稳定性、鲁棒性和灵活性。文中还讨论了这些方法在军事、救援、工业自动化等多个实际应用场景中的潜力。 适合人群:对多机器人系统感兴趣的科研人员、工程师和技术爱好者,尤其是那些希望深入了解并掌握多机器人编队控制理论与实践的人群。 使用场景及目标:适用于需要进行多机器人协同工作的项目,如军事演习、灾难救援、工业生产线等。目标是提高多机器人系统的协作效率,增强任务执行能力。 其他说明:本文不仅提供详细的MATLAB代码实现,还深入解析了各种编队控制方法背后的原理,帮助读者更好地理解和应用这些技术。
2025-11-23 21:10:10 382KB MATLAB 图论法 领航跟随
1
具有通信时变时延和扰动的事件触发的多智能体领导跟随一致性问题的仿真:效果良好.pdf
2025-10-31 16:50:55 49KB
1
多智能体系统(MAS)中领导跟随一致性问题的研究成果。针对通信时变时延和扰动带来的挑战,提出了一种基于事件触发机制的方法,并通过仿真实验展示了其有效性。文中首先概述了多智能体系统的概念及其优势,接着深入讨论了领导跟随一致性问题的具体挑战,特别是通信时变时延和扰动对系统性能的影响。随后,提出了具有通信时变时延和扰动的事件触发机制,该机制通过减少不必要的通信次数并动态调整通信策略,提高了系统的适应性和鲁棒性。最后,通过具体的仿真实验验证了这一机制的有效性,实验结果表明,系统在引入该机制后,领导跟随一致性显著提高,智能体间的通信更加高效,协同工作能力得到增强。 适合人群:从事多智能体系统研究的科研人员、高校师生以及相关领域的工程师。 使用场景及目标:适用于需要解决多智能体系统中领导跟随一致性问题的实际应用场景,如无人机编队飞行、自动驾驶车队管理等。目标是提高系统的稳定性和协同效率,确保在复杂环境下仍能保持高效的领导跟随一致性。 其他说明:文中提供的代码片段展示了如何实现智能体类和事件触发类的基本结构,为后续研究提供了参考。
2025-10-31 16:49:42 784KB
1
多智能体协同控制技术,特别是无人车、无人机和无人船的编队控制与路径跟随。重点讲解了基于模型预测控制(MPC)的分布式编队协同控制方法及其在MATLAB和Simulink中的实现。文中还涉及路径规划的重要性和常用算法,如A*算法和Dijkstra算法。通过具体的MATLAB代码示例和Simulink建模,展示了如何实现高效的多智能体协同控制。 适合人群:对无人驾驶技术和多智能体系统感兴趣的科研人员、工程师及高校学生。 使用场景及目标:适用于研究和开发无人车、无人机、无人船的编队控制和路径规划项目,旨在提高多智能体系统的协同效率和性能。 其他说明:文章不仅提供了理论背景,还包括实用的代码示例和仿真工具介绍,有助于读者深入理解和实践相关技术。
2025-10-22 12:09:51 300KB
1
第二十届全国大学生智能智能汽车竞赛技术报告:双车跟随
2025-09-13 17:02:54 585.95MB
1
基于Cruise增程混动仿真模型的功率跟随控制策略研究:动力性与经济性仿真体验,cruise软件模型,cruise增程混动仿真模型,功率跟随控制策略,Cruise混动仿真模型,串联混动汽车动力性经济性仿真。 关于模型 1.本模型是基于增程混动架构搭载的cruise仿真模型,控制策略为功率跟随控制,跟随对象为整车需求功率。 模型是基于cruise simulink搭建的base模型,策略模型基于MATLAB Simulink平台搭建完成,通过C++编译器编译成dll文件给CRUISE引用,实现联合仿真。 2.尽可能详细的描写了策略说明,大约11页左右,主要解释策略搭建逻辑及各模式间的转。 3.模型主要供学习使用,不同的车型控制策略必然不同,请不要抱着拿来即用的态度购拿,具体车型仿真任务请根据需求自行变更模型。 4.使用模型前请确保有相应软件基础,是模型,不是软件教程。 5.模型亲自搭建,提供所有相关文件。 包含:cruise模型、simulink策略模型、策略说明文档。 6.DLL文件使用64位编译器编译,如出现无策略文件提示,请在模型界面选择“options→layout→platfo
2025-09-06 19:44:57 1.38MB
1
电子手轮Ver1.1:PLC与伺服驱动器协同,实现X/Y轴精准跟随控制,电子手轮Ver1.1(位置跟随,X轴或Y轴) 1.200smart、威纶通触摸屏 2.手轮或编码器+PLC+伺服驱动器 3.手轮接入PLC,伺服接Q0.0或Q0.1,手轮转动,伺服电机准确跟随。 4.采用PLS指令编写 5.不带加减速 6.可选择X轴或Y轴跟随手轮。 ,核心关键词:电子手轮Ver1.1; 位置跟随; X轴/Y轴; 1.200smart; 威纶通触摸屏; 手轮接入PLC; 伺服驱动器; PLS指令; 不带加减速。,电子手轮控制V1.1:手轮跟随X/Y轴与PLC、伺服的无加减速系统
2025-08-20 21:24:35 2.07MB edge
1
电子手轮Ver1.1(位置跟随,X轴或Y轴) 1.200smart、威纶通触摸屏 2.手轮或编码器+PLC+伺服驱动器 3.手轮接入PLC,伺服接Q0.0或Q0.1,手轮转动,伺服电机准确跟随。 4.采用PLS指令编写 5.不带加减速 6.可选择X轴或Y轴跟随手轮。 在现代工业自动化控制系统中,电子手轮作为一种精密的人机交互设备,扮演着重要的角色。电子手轮Ver1.1版本的推出,标志着该技术在位置跟随功能上的进一步优化。该系统主要适用于200smart、威纶通等触摸屏设备,能够实现手轮或编码器与PLC(可编程逻辑控制器)及伺服驱动器的有效连接,从而实现精准的机械运动控制。 在电子手轮Ver1.1中,手轮的转动信号首先被接入PLC,然后PLC发出指令至伺服驱动器,通过Q0.0或Q0.1接口控制伺服电机,实现电机的准确跟随。这一过程的编程主要采用了PLS指令,即位置锁存指令,它能够实现伺服电机对于手轮转动位置的快速而精确的捕捉。 该系统的特点之一是直接操作性,它不包含加减速功能,这意味着它能够以一种非常直观的方式响应手轮的操作,立即实现机械部件的精确定位。另一个重要的功能是可选择性,用户可以根据实际需要选择X轴或Y轴跟随手轮,这一功能大大提高了系统在不同工作环境下的适用性和灵活性。 电子手轮技术的核心在于它如何将用户的机械操作意图转换为精确的控制信号,并通过伺服系统实现对机械设备的高精度控制。这种技术不仅在制造业中有广泛的应用,如数控机床、3D打印、精密装配等领域,同样在自动化设备调试、维护和操作过程中也扮演着至关重要的角色。 从技术文档的名称可以看出,电子手轮Ver1.1不仅包括了技术细节的阐述,还涉及了从位置跟随到自动化控制的全过程解析。文档通过深入解读,带领读者理解电子手轮如何在现代工业中发挥作用,包括它在自动化控制中的地位、工作原理以及操作方式。这些文档文件为技术工程师提供了详细的学习和参考材料,帮助他们更好地理解和应用电子手轮技术,从而提升整个生产线的效率和精度。 此外,电子手轮技术的发展还体现在其与各类触摸屏的兼容性上,如200smart和威纶通触摸屏的应用。触摸屏作为人机界面的一种,它的加入使得操作更加直观和便捷,提升了整个系统的用户体验。通过触摸屏,操作者可以实时监控手轮的工作状态,并对系统进行必要的调整,这对于保证产品质量和提高工作效率具有重要意义。 电子手轮Ver1.1在现代工业自动化领域中,为实现精确控制提供了强有力的支持。通过结合PLC和伺服驱动器的先进技术,该手轮系统能够满足工业生产中对于精密操作的需求,无论是在复杂的机械运动控制上,还是在提供直观操作界面方面,都显示出了显著的优势。随着工业自动化水平的不断提高,我们有理由相信电子手轮技术将会发挥更加重要的作用。
2025-08-20 20:38:22 2.06MB safari
1
fps ai ,效果超牛 极速框架架构 经过版本前期优化及策略我们有着相当完善的框架优化方案,以更加超快的推理速度以达最好的效果。 动态预测 独家自写预测方案,可根据移动速度自动化预判移动目标,精准定位移动,以更加稳定的效果和速率带来最好的体验。 AI轨迹 独家首创AI轨迹算法,可训练个人习惯的鼠标移动轨迹,经过AI训练的轨迹,每个人都是独一无二。 全场景云配置 适配:参数配置,云模型等,极限幅度降低程序大小,不再需要每次都冗杂的调参,极大程度提高体验。 产品UI 经过产品更新迭代,我们了解大部分用户使用习惯,以更加简洁但不失视觉体验的界面,提高用户使用简洁性和更快速的适用度。 Game仓库 不断新增自行训练的高精度模型,极大减少用户对单一类目的繁腻感,Game类目,不断新增,持续添加。
2025-07-30 21:00:06 78.8MB pubg zenith
1
电子设计大赛中C题所关注的小车跟随行驶系统是一个集成了传感器技术、控制理论和机电一体化的综合性项目。这类系统的核心目的在于实现小车的自主导航和跟随功能,这通常要求设计者对目标小车进行精确的速度和方向控制,使其能够跟随设定路径或引导车行驶。 在设计和实现这样的系统时,首先需要考虑的是传感系统的设计。传感系统通常包括但不限于红外传感器、超声波传感器、摄像头等,这些传感器能够帮助小车实时探测到环境中的信息和引导车的状态。例如,红外传感器能够检测到路径上的特定标志,超声波传感器可以用于距离测量,而摄像头则可以捕捉引导车的颜色、形状等特征信息。 控制代码的编写是整个跟随系统的核心。控制代码需要根据传感器获取的数据来计算小车的运动参数,包括但不限于速度、方向、加速度等。在编写控制代码时,设计者往往会运用PID(比例-积分-微分)控制理论,通过不断调整这三个参数来确保小车的运动状态能够平滑且准确地跟随引导车。此外,控制算法还可能包括卡尔曼滤波、模糊逻辑控制等高级算法,以增强系统的稳定性和适应性。 除了硬件设计和软件编程外,系统的调试和优化也是不可或缺的环节。在实际操作过程中,设计者需要根据小车在实际环境中的表现反复调试控制参数,以达到最佳的跟随效果。这通常包括对小车的响应时间、转向灵敏度、速度匹配等方面的优化。 在电子设计大赛这样一个竞赛环境中,小车跟随行驶系统的设计不仅考验了参赛者的技术能力,更是一个团队合作和创新思维的体现。成功的作品往往需要参赛者之间有良好的沟通协作,同时具备快速学习和应用新技术的能力。 在本压缩包文件中,由于只提供了一个文件名称“DSqrs942240909”,我们无法得知该文件中具体包含了哪些控制代码和设计细节。但可以推测,该文件中应该包含用于实现小车跟随行驶系统的控制代码,以及可能的传感器配置和控制算法的实现。这些代码将为设计者提供实现小车跟随功能的基础框架,而具体的调试和优化则需要在实际硬件平台上进行。 由于本文件仅提供了标题、描述、标签和一个文件名,没有具体的内容可以分析,因此无法提供更详细的技术分析和知识点描述。不过,上述内容已经概括了电子设计大赛中C题——小车跟随行驶系统的关键点和设计者需要关注的重点领域。
2025-06-08 20:52:13 5.33MB
1