内容概要:本文档详细介绍了如何使用Python Flask框架搭建一个包含多种Web安全漏洞的应用程序。主要包括SQL注入、XSS(跨站脚本攻击)、CSRF(跨站请求伪造)、SSRF(服务器端请求伪造)、XXE(外部实体扩展攻击)、文件上传漏洞、敏感信息泄露、暴力破解、RCE(远程代码执行)以及用户枚举漏洞的代码示例与界面展示。 适用人群:信息安全专业学生、网络安全研究员、网站开发者等需要学习或测试Web安全漏洞的专业人士。 使用场景及目标:为学习者提供真实的漏洞复现环境,帮助深入理解和掌握各种Web应用层的安全威胁及其防范措施。 其他说明:虽然本项目旨在用于教育目的,但实际部署时请注意不要将存在漏洞的服务暴露于公共网络中,以免引发不必要的风险。同时,在测试和练习过程中要遵守法律法规,尊重他人的知识产权和个人隐私。
2025-06-10 09:41:26 7KB web安全 Flask 漏洞利用 渗透测试
1
基于深度学习的图像识别:猫狗识别 一、项目背景与介绍 图像识别是人工智能(AI)领域的一项关键技术,其核心目标是让计算机具备像人类一样“看”和“理解”图像的能力。借助深度学习、卷积神经网络(CNN)等先进算法,图像识别技术实现了从图像信息的获取到理解的全面提升。近年来,这一技术已在医疗、交通、安防、工业生产等多个领域取得了颠覆性突破,不仅显著提升了社会生产效率,还深刻改变了人们的生活方式。猫狗识别的实际应用场景 该模型由两层卷积层和两层全连接层组成,主要用于图像分类任务。 第一层卷积层: 将输入的224×224×3图像通过3×3卷积核映射为112×112×16的特征图。 第二层卷积层: 将特征图进一步转换为 56×56×32。 池化层: 每层卷积后均接一个2×2的最大池化层,用于减少特征图的空间维度。 全连接层:第一层全连接层将向量映射。 第二层全连接层输出对应类别的概率分布(由 num_classes 决定)。 激活函数:使用ReLU作为激活函数。该模型具备较低的参数量,适用于轻量级图像分类任务。
2025-06-09 12:24:39 416KB 实验报告 深度学习 python
1
通信原理SystemView软件下的16QAM调制与解调系统仿真实验报告(含星座图与功率谱分析),SystemView下短波16QAM调制与解调系统仿真研究:波形分析与星座图解读,通信原理 systemview 16QAM调制与解调系统的仿真 16QAM调制解调系统与解调系统的仿真 用SystemView建立一个16QAM调制解调器电路,分析理解系统的各个模块功能,观察波形图。 判断是不是实现了16QAM调制解调系统功能。 基本要求: (1)在SystemView软 件中构建短波16QAM仿真电路 (2)计算及设定各个模块适当仿真参数 (3)仿真并输出正确仿真波形 (4)根据结果做好分析 提高要求: (1) 进一步分析其结果中的功率谱 (2)分析其调制后的信号星座图 有仿真文件和实验报告,实验报告内容为图三 ,关键词: 16QAM调制与解调;SystemView仿真;仿真电路构建;模块功能分析;仿真波形输出;功率谱分析;信号星座图分析;仿真文件;实验报告。,基于SystemView的16QAM调制解调系统仿真与性能分析
2025-06-09 11:08:22 1.34MB xhtml
1
基于YOLOv8的URPC2021水下目标检测实验:海参、海胆、扇贝与海星的精准识别,基于YOLOv8的水下多目标检测系统:以URPC2021数据集的多种海产动物为研究对象,基于YOLOv8的水下目标检测 实验使用URPC2021数据集。 该数据集包含:海参“holothurian”,海胆“echinus”,扇贝“scallop”和海星“starfish”等四类。 检测数据集包含YOLO txt格式。 图片数量如下: train(6468张) val(1617张) 项目采用yolov8s进行训练,使用pyqt5设计了界面,可直接检测。 ,核心关键词: 1. YOLOv8 2. 水下目标检测 3. URPC2021数据集 4. 海参、海胆、扇贝、海星 5. 检测数据集(YOLO txt格式) 6. 训练 7. 图片数量(train/val) 8. yolov8s 9. pyqt5 10. 界面检测,基于YOLOv8的URPC2021水下目标检测实验
2025-06-09 11:02:18 247KB css3
1
遗传算法是一种模拟自然选择和遗传学原理的搜索启发式算法,它在处理优化和搜索问题方面表现出强大的能力。在本报告中,实验的目的是通过遗传算法来解决经典的旅行商问题(TSP)。TSP是一个典型的组合优化问题,要求找到一条经过所有城市且路径最短的闭合路径。由于其计算复杂性非常高,解决大规模TSP问题一直是研究的热点。 在实验中,首先需要熟悉遗传算法的基本原理和流程。遗传算法的核心思想是通过模拟自然遗传过程来进行参数优化。问题的解被编码为染色体,通过选择、交叉(杂交)和变异操作来模拟生物进化的过程,进而产生更适应环境的后代,这个过程不断迭代,直到找到最优解。 在实验的流程中,首先需要初始化种群,即随机生成一组可能的解决方案。随后,要确定种群的规模、迭代次数、选择方式、交叉概率和变异概率等参数。染色体的适应度值是根据城市之间的欧氏距离来计算的。通过迭代选择、交叉和变异,最终在多次迭代后找到一条最短的路径。 实验内容详细说明了如何使用遗传算法求解TSP问题,并对算法性能进行分析。通过改变种群规模、交叉概率和变异概率等关键参数,可以观察到它们对算法结果的影响。实验显示,种群规模不是越大越好,存在一个最佳规模使得算法效率和结果最优。同时,交叉概率和变异概率对结果也有显著影响,过高的变异概率可能会破坏好的解,而过低则可能导致早熟收敛。 实验还包括了设计新的变异策略和个体选择概率分配策略,并测试了这些新策略对解决TSP问题的影响。通过实验的比较分析,可以评估不同策略的有效性,并最终选择出最适合当前问题的策略。 实验报告还规定了必须绘制出遗传算法求解TSP问题的流程图,并对遗传算法求解不同规模TSP问题的性能进行分析。在规模较小的TSP问题中,遗传算法能有效地找到最优解或者非常接近最优的解。但是,随着城市数量的增加,算法的性能逐渐下降,所需时间增长。 遗传算法在解决TSP问题上具有一定的优势,它能够有效地搜索出较优解,并通过调整参数和设计策略来提升算法的性能。然而,该算法也存在局限性,特别是在面对大规模TSP问题时,算法效率和结果可能不尽人意,需要进一步优化和改进。
2025-06-09 09:09:47 176KB
1
Spark 初级编程实践 Spark 是一个大数据处理的开源 cluster computing 框架,具有高效、灵活、可扩展等特点。本实验报告旨在通过 Spark 初级编程实践,掌握 Spark 的基本使用和编程方法。 一、安装 Hadoop 和 Spark 在本机 Windows 10 上安装 Oracle VM VirtualBox 虚拟机,安装 CentOS 7 操作系统,并配置 Hadoop 3.3 环境。由于 Hadoop 版本为 3.3,所以在官网选择支持 3.3 的 Spark 安装包,解压安装包到指定文件夹,配置 spark-env.sh 文件,启动 Spark 成功。 二、Spark 读取文件系统的数据 Spark 可以读取 Linux 系统本地文件和 HDFS 系统文件。在 spark-shell 中读取 Linux 系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数。在 spark-shell 中读取 HDFS 系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数。编写独立应用程序(使用 Scala 语言),读取 HDFS 系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数。使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 三、编写独立应用程序实现数据去重 编写 Spark 独立应用程序,对两个输入文件 A 和 B 进行合并,并剔除其中重复的内容,得到一个新文件 C。使用 Scala 语言编写程序,并使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 四、编写独立应用程序实现求平均值问题 编写 Spark 独立应用程序,求出所有学生的平均成绩,并输出到一个新文件中。使用 Scala 语言编写程序,并使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 五、问题解决 在实验过程中,遇到了三个问题。问题一是运行 start-all 命令时 Spark 报错说缺少依赖,解决方法是下载安装包时选择正确的版本。问题二是在 etc/profile 中更改完环境后,Source 命令刷新文件仍然出现路径配置错误,解决方法是在同一个窗口 source 一下成功启动。问题三是在用 sbt 编译的过程中报错,解决方法是将编译的 sbt 文件配置改为启动 spark-shell 中现实的 Scala 版本号。 本实验报告通过对 Spark 的基本使用和编程方法的实践,掌握了 Spark 的基本使用和编程方法,并解决了实验过程中的问题。
2025-06-08 15:55:11 913KB spark 编程语言
1
我们报告了使用大多数SuperCDMS Soudan数据集对弱相互作用的大颗粒(WIMP)进行盲搜索的结果。 在1690 kg d的暴露下,观察到一个候选事件,与预期的背景一致。 该分析(与先前的Ge结果结合)为<math> 1.4 × 10的自旋无关的WIMP-核子截面设置了上限 44 </ math> <math> < mn> 1.0 </ m
2025-06-08 09:29:24 851KB Open Access
1
如果暗物质的自旋为0,则只有两个WIMP-核子相互作用算子可以作为暗物质-夸克相互作用的可归一化单介体模型的非相对论性简化而成为主导算子。 基于这一至关重要的观察,我们表明,在下一代定向检测实验中,约有100个信号事件足以使自旋0暗物质假设获得2σ抑制,从而有利于暗物质粒子具有自旋1/2或自旋的其他假设。 在这种情况下,方向敏感性至关重要,因为核后坐力方向的各向异性模式取决于暗物质粒子的自旋。 为了进行比较,对于质量为100 GeV的WIMP和WIMP氟散射截面为0.25 pb的CF4检测器,在30托的压力下工作,预期暴露约26,000立方米检测器天,预计会有约100个信号事件。 可比的曝光量需要一组立方米时间投影室探测器。
2025-06-07 23:05:33 772KB Open Access
1
我们报告了在中国锦屏地下实验室用浸入液氮中的10 kg锗探测器阵列从CDEX-10实验中搜索到的一个轻弱相互作用的大颗粒(WIMP)的最初结果,该物理场的数据量为102.8 kg /天。 在160 eVee的分析阈值下,在WIMP质量下,分别在自旋无关和自旋依赖性WIMP核子截面上以90%的置信度提高了8×10-42和3×10-36 cm2的限制( 达到5 GeV / c2。 mχ的较低范围扩展到2 GeV / c2。
2025-06-07 21:44:12 1.16MB Open Access
1
### CSU计网实验B1知识点详述 #### 实验目的 本次实验旨在使学生能够: 1. **熟练掌握** C++、JAVA 或 Python 等编程语言在集成开发环境中编写网络程序的方法。 2. **深入理解** 客户端/服务器(C/S)架构的应用模式及其工作原理。 3. **学习并实践** 网络中进程间通信的基本原理与具体实现方法。 #### 实验要求 - 实验要求参与者在同一台机器上实现客户端和服务器的功能,即**本机既是客户端也是服务器端**。 #### 实验内容 实验要求参与者编写一个基于socket的简易聊天程序,具备以下功能: 1. **点对点通信**:任意两个客户端之间能够相互发送消息。 2. **群组通信**:客户端能够向组内的特定成员发送消息,而非组内成员不应接收这些消息。 3. **广播功能**:客户端能够向所有其他成员广播消息。 #### 实验方案设计与实施 ##### 服务器端开发 - **Socket编程**:使用Java的Socket API来创建服务器端,并监听特定端口,等待客户端的连接请求。每当有客户端连接时,服务器会为该连接创建一个新的线程来处理通信。 - **多线程处理**:为了支持多个客户端同时在线聊天,采用了多线程技术。每个客户端连接都会被分配到一个独立的线程,这样可以并行处理来自不同客户端的消息。 - **数据解析与发送**:服务器需要解析客户端发送的数据包,提取出消息内容、发送者等信息,并将这些信息广播给所有在线的客户端。此过程使用Java的I/O流实现数据的读写操作。 ##### 客户端开发 - **GUI设计**:使用Java的Swing库设计客户端的图形用户界面(GUI),界面包含登录框、聊天窗口、输入框等控件。 - **Socket连接**:客户端通过Socket连接到服务器并与之进行通信。这里使用Java的Socket API来实现。 #### 示例代码分析 ##### 1. Server.java ```java package chatRoom; public class Server { public static void main(String args[]) { new ServerChat() ; } } ``` 这段代码定义了一个名为`Server`的类,其中只有一个`main`方法,用于启动服务器应用程序。 ##### 2. ServerChat.java ```java package chatRoom; import java.awt.*; import java.awt.event.*; import java.io.*; import java.net.*; import java.util.ArrayList; import java.util.List; import javax.swing.*; public class ServerChat extends JFrame { private static final long serialVersionUID = 1L; private List sockets = new ArrayList(); private List clientname = new ArrayList(); private JTextArea contentArea; private JTextArea sendArea; private JComboBox cmb; public static void main(String args[]) { new ServerChat(); } public ServerChat() { try { ServerSocket ss = new ServerSocket(9999) ; this.init(); this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE); this.setVisible(true); while(true) { Socket socket = ss.accept() ; sockets.add(socket); Thread thread = new Thread(new ServerThread(socket)) ; thread.start(); } }catch(Exception ex) { ex.printStackTrace(); } } public void init( ) { ``` 这部分代码展示了服务器类`ServerChat`的实现,主要负责服务器的初始化和运行逻辑: - 使用`ServerSocket`监听端口9999,等待客户端连接。 - 为每次接受的连接创建一个新的`Socket`对象,并将其添加到`sockets`列表中。 - 为每个新连接创建一个新的线程`ServerThread`来处理客户端的请求。 - 初始化GUI组件,包括聊天内容区域、发送区域和组合框等。 - 设置窗口关闭行为,并使窗口可见。 通过以上内容,我们可以看到整个聊天程序的设计思路和技术实现细节,这不仅有助于学生理解和掌握网络编程的基本概念,还能够提升其编程实践能力。
2025-06-07 21:42:49 169KB 计算机网络
1