双向DC DC蓄电池充放电储能matlab simulink仿真模型,采用双闭环控制,充放电电流和电压均可控,电流为负则充电,电流为正则放电,可以控制电流实现充放电。 (1)可通过电流环控制电池充放电电流(电流闭环) (2)可通过电压环控制电池两端充放电电压(电压闭环) 双向DC DC蓄电池充放电储能系统的仿真模型研究,是现代电子科技领域中的一个重要课题。该系统能够实现能量的双向转换,即既能将电能存储为化学能,又能将化学能转换回电能,广泛应用于电动汽车、可再生能源存储以及电网调节等多种场合。随着对能源高效利用和可持续发展的需求不断增长,对双向DC DC蓄电池充放电储能系统的控制与仿真研究变得尤为重要。 在本仿真模型中,采用了双闭环控制策略,这是一种先进的控制方法,通过内环控制电流和外环控制电压,实现了对充放电过程的精确控制。具体来说,电流闭环控制负责维持电池充放电电流的稳定,而电压闭环控制则保证了电池两端电压的恒定。通过这种结构,可以根据需要灵活地调整充放电电流,以实现对储能系统的优化管理。 在充放电过程中,根据电流的方向可以判断出电池是在充电还是在放电状态。当电流为负值时,表示电池正在接受电能,即充电状态;反之,当电流为正值时,则意味着电池正在释放电能,即放电状态。通过精确控制电流的大小和方向,可以有效地管理电池的能量存储和输出,保证电池在最佳状态下工作,延长其使用寿命。 仿真模型的开发涉及到多个技术领域,包括电力电子技术、控制系统理论、储能材料学以及计算机科学等。在MATLAB/Simulink环境下进行模型搭建和仿真实验,可以直观地观察到电池充放电过程中的各种动态行为,这对于验证控制算法的性能,优化系统参数,提高系统稳定性和可靠性都具有重要意义。 此外,通过查阅相关文献和分析仿真结果,研究人员能够深入理解双向DC DC蓄电池充放电储能系统的运行机制,为实际电池管理技术的开发和应用提供理论支持和技术指导。例如,通过仿真模型的分析,可以对电池充放电过程中的能量损失进行评估,优化电池组的充放电策略,减少能量损耗,提升系统的整体效率。 双向DC DC蓄电池充放电储能系统及其仿真模型的研究,不仅能够为电池管理系统的设计和优化提供科学依据,而且对于推动储能技术的发展、实现能源的高效利用具有重要的现实意义。随着相关技术的不断进步,未来双向DC DC蓄电池充放电储能系统将在更多领域得到广泛应用,为人类社会的可持续发展做出更大的贡献。
2026-01-24 19:29:26 276KB 数据结构
1
内容概要:本文档提供了关于四开关Buck-Boost双向DC-DC电源的全面学习资料,涵盖硬件设计、软件编程、仿真实验等多个方面。硬件部分包括主电路、辅助电源、信号调理与滤波、控制器等电路的设计;软件部分则涉及三种不同模式(Buck、Boost、Buck-Boost)的程序源码及其保护机制;仿真部分利用PSIM进行了详细的建模与测试。此外,文档还包括详细的计算书、硬件设计报告以及软件设计报告,确保每个环节都有据可依。特别值得一提的是,该项目采用了STM32F334C8T6作为主控芯片,实现了高效稳定的电压转换与保护功能。 适合人群:从事电力电子、嵌入式系统开发的技术人员,特别是对DC-DC变换器有研究兴趣的学习者。 使用场景及目标:适用于需要深入了解四开关Buck-Boost双向DC-DC电源的工作原理和技术实现的研究人员或工程师。通过本项目,读者可以掌握从理论到实践的全过程,包括但不限于硬件选型、电路设计、程序编写、故障排除等方面的知识。 其他说明:文档不仅提供了详尽的技术资料,还分享了许多实用的经验技巧,如HRTIM定时器配置、保护机制设计、模式切换逻辑优化等。同时,附带的计算书和设计报告为后续的实际应用提供了宝贵的参考资料。
2026-01-16 11:33:54 2.24MB
1
标题中的“APW7137升压模块电路设计方案”是指使用APW7137芯片设计的一个升压转换器的电路布局。APW7137是一款高效、低噪声的升压控制器,常用于电源管理系统,特别是需要将低电压提升至更高电压的应用中,例如在电池供电的便携式设备或者物联网(IoT)设备中。 我们需要理解APW7137的功能特性。这款芯片具有以下特点: 1. 内置开关:APW717是一款内置MOSFET的升压控制器,可以降低外部元件数量,减小电路板空间。 2. 宽输入电压范围:通常能够处理3.3V到24V的输入电压,适用于多种电源条件。 3. 高效率:优化的开关控制算法使得在各种负载条件下都能保持高效率。 4. 调节精度:具有精密的电压基准,可提供准确的输出电压调节,确保系统稳定运行。 5. 安全保护:包括过电流保护、热关断保护等,以防止器件损坏。 描述中提到“目前正在打样中,后续补充”,这表明这个电路设计正处于验证阶段,可能正在进行实际硬件测试,以确认设计是否符合预期,并且未来可能会有更多关于设计细节和测试结果的更新。 标签中的“开源”意味着设计资料可能是公开的,允许其他人学习、复制或改进。"升压板"指的是该电路板的主要功能是升压,"DC-DC"则表明这是一种直流到直流的转换过程。 在压缩包内的文件列表中: - PCB.pcbdoc:这是PCB设计的文件,包含了电路板的布局信息,包括元器件的位置、走线路径等。 - C126188_APW7137BI-TRG_2017-08-18.pdf:可能是APW7137的数据手册或者应用笔记,提供了芯片的技术规格、推荐用法以及应用示例。 - FkH-O_2W7u1lGWaZWcL6QBowO07P.png等图片文件:这些可能是电路板的3D视图、电路图的截图或者是其他相关的设计细节。 - 原理图.png和原理图.schdoc:这是电路原理图的图片和原始设计文件,展示了电路的工作原理和连接方式。 通过分析这些文件,我们可以深入研究APW7137升压模块的电路设计,包括如何选择合适的电容、电感、电阻等外围元件,以及如何布局以实现最佳性能。此外,还可以通过查看数据手册理解APW7137的内部结构和工作模式,以便进行更高效的设计和故障排查。
2026-01-08 23:04:41 1.14MB apw7137 电路设计方案 DC-DC
1
### DC-DC 输出电压可调方法详解 #### 概述 DC/DC转换器作为电子设备中的关键组件,在各种应用场景中发挥着重要作用。在很多情况下,我们不仅需要它能够稳定输出某一固定电压值,还需要其输出电压能够在一定范围内进行调节。这种需求主要来自于一些需要动态调整电源电压的应用场景,例如在数字电路中,由CPU芯片控制的电路往往就需要这种灵活性。本文将详细介绍如何通过CPU控制D/A转换器来实现DC/DC转换器输出电压的可调功能,并深入探讨其中的电路原理及计算方法。 #### CPU 控制 D/A 转换器实现 DC-DC 输出电压可调 在实际应用中,DC/DC转换器通常具备一个反馈(FB)引脚,该引脚的电压决定了转换器的输出电压水平。通过在FB引脚接入一个由D/A转换器输出的电压信号,我们可以实现对DC/DC转换器输出电压的动态调节。 ##### 电路结构 - **D/A转换器**:用于将CPU输出的数字信号转换为模拟电压信号。 - **FB类型的DC/DC转换器**:选择具有FB引脚的DC/DC转换器,这样可以通过外部电阻来调整输出电压。 - **电阻**:RFB1、RFB2和RDAC用于构成分压网络,连接D/A转换器输出与DC/DC转换器的FB引脚。 #### 计算方法 为了更好地理解这一过程,我们需要掌握几个关键参数之间的关系: - VFB:DC/DC转换器的反馈电压,一般为1V或0.9V。 - RDAC:连接D/A转换器输出端的电阻。 - RFB1、RFB2:构成分压网络的两个电阻。 - VDAC:D/A转换器的输出电压。 根据分压公式,可以得出输出电压VOUT的变化量与VDAC变化量之间的关系: \[ \Delta VOUT = \frac{RFB2}{RFB1 + RFB2} \cdot \Delta VDAC \] 其中,初始状态下的RFB2可以任意设定,但需要满足以下条件: \[ VOUT_{max} = VFB \cdot \left( \frac{RFB1 + RFB2}{RFB2} \right) \] 这里需要注意的是,当D/A转换器的输出电压VDAC等于FB引脚的参考电压VFB时,输出电压VOUT达到最大值VOUTmax;而VDAC减小时,VOUT也随之减小。 #### 电路工作原理 电路的基本工作原理是利用D/A转换器输出的模拟电压信号来改变流入DC/DC转换器FB引脚的电流大小,进而控制DC/DC转换器的输出电压。 - 当D/A转换器的输出电压VDAC高于FB引脚的参考电压VFB时,电路中的电流方向是从D/A转换器流向DC/DC转换器的FB引脚。 - 反之,当VDAC低于VFB时,电流方向则相反。 由此可以看出,输出电压VOUT与D/A转换器的输出电压VDAC之间存在反比例关系。即VDAC增大时,VOUT减小;VDAC减小时,VOUT增大。 #### 基本电路示例 下面通过两个具体的例子来进一步阐述上述原理。 **例1** - 输出电压范围:0.5V~3.0V - 分解能:8位,1LSB=10mV - D/A转换器Full Scale:255 - D/A转换器输出电压:0V~2.5V - 当D/A转换器设定为255时,输出电压为0.5V;当设定为0时,输出电压为3.0V - 使用的元件:XC9220A095MR-G(DC/DC转换器)、XP162A12A6PR-G(8位D/A转换器) **例2** - 输出电压范围:3V~8V - 分解能:10位,1LSB=5mV - D/A转换器Full Scale:1024 - D/A转换器输出电压:0V~2V - 当D/A转换器设定为1023时,输出电压为3V;当设定为0时,输出电压为8V - 使用的元件:XC9103/4/5系列芯片(DC/DC转换器)、MICROCHIP TC1320(10位D/A转换器) 以上就是通过CPU控制D/A转换器实现DC/DC转换器输出电压可调的具体方法及其背后的电路原理。通过这种方式,我们不仅可以实现对输出电压的精确控制,还能够根据实际应用的需求灵活调整电压范围,极大地提高了电路设计的灵活性和实用性。
2026-01-04 22:11:50 206KB 输出可调
1
光伏逆变器设计资料:包含DC-DC Boost升压与DCAC全桥逆变电路原理图、PCB、源代码及BOM.pdf
2026-01-02 15:47:36 66KB
1
基于SG3525和DC/DC变换器的大电流低电压开关电源设计涉及到开关电源的原理、设计方法以及关键组件的应用。为了设计一款输出直流电流在45~90A范围内可调、输出电压可以在5~15V自动调整以适应负载变化并保持恒定输出电流的大电流低电压直流开关电源,本文概述了以下几个关键技术知识点。 本设计采用的SG3525是一个广泛应用于开关电源的PWM控制器。SG3525是一个双列直插式封装的集成电路,它能提供精确的PWM波形,并且内部集成了振荡器、误差放大器、基准电压源、欠压锁定和软启动等功能,非常适合于需要精确控制的大电流开关电源设计。 设计中所提及的全桥变换器,是一种DC/DC变换器的拓扑结构,其特点是利用四个开关管组成一个桥式结构,通过切换这些开关管的导通和关闭状态,能够将直流电转换为高频方波交流电。全桥变换器相比其他类型的变换器,能够更有效地处理大电流的情况。 输出电流的调节采用电流传感器采样输出直流电流作为反馈信号,反馈到控制电路,实现PWM调制。这种控制方式可以有效地稳定输出电流,防止电源在大负载变动时发生过流或欠流的情况。 在电源总体设计中,采用了恒流源工作方式,保证了即使在负载变化的情况下,输出的电流也能保持在设定的范围内。这种设计方法特别适用于需要恒定电流输出的场合,例如电镀、电解等工艺。 本设计中还提到了软启动电路,这是为了防止电源在接入电网时由于电容器上的初始电压为零而产生过大的瞬间冲击电流。软启动电路能够逐渐增加输出电压,让电流缓慢地达到预设的工作状态,从而避免对电源内部元件造成损害,提高电源的可靠性。 针对大电流低电压电源对高频干扰信号敏感的特点,本设计在交流电整流前采用EMI滤波器,能够有效减小交流电源输入的电磁干扰,并且防止开关电源产生的谐波串扰到输入电源端。EMI滤波器在开关电源设计中是十分关键的元件,它能抑制高频噪声,提升电源的电磁兼容性能。 高频变压器的设计采用了AP法,通过精确计算磁芯有效截面积和线圈有效窗口面积的乘积(AP),选择了合适的磁芯材料和尺寸。高频变压器的设计优化对于整个变换器的性能至关重要,它不仅需要满足功率传输的要求,还要保证高效率和低漏感。 文中提到的电流密度选择为400A/cm²,这表明设计者在变压器绕组设计时考虑到了电流的密度,以确保变压器能在大电流条件下稳定工作,不会由于过热导致性能下降或损坏。 本文所介绍的开关电源设计需要对电源控制、主电路拓扑结构、EMI滤波器的应用、高频变压器设计以及电流控制和反馈机制等方面有深入的理解和精准的实施。这些关键技术和方法的应用,确保了开关电源能够输出大电流且稳定性好,满足工业应用对电源的严格要求。
2025-12-23 09:12:22 192KB SG3525 开关电源 技术应用
1
本文设计的稳压电源采用性能稳定常用的PWM 芯片SG3525 来进行反馈调整稳压,并通过51 单片机来设定输出电压,功放电路采用MOS 管搭建的双端推挽方式,提高了电源效率。系统测试和运行结果表明,该稳压电源使控制更加智能化,能够长期高效,稳定的工作。 开关稳压电源是一种广泛应用在各种领域,特别是农业自动化中的高效能源转换装置。本文重点讨论了基于SG3524(实为SG3525,可能是笔误)的开关稳压电源设计,该设计旨在提高电源效率和稳定性,以适应农业电气设备的需求。 SG3525是一款高性能的脉宽调制(PWM)控制器,常用于电源管理,它能通过反馈机制调整输出电压,确保电源的稳定。与传统的PWM芯片相比,SG3525拥有更强的驱动能力,提供图腾柱式输出,简化了驱动变压器的设计,降低了外围电路的复杂性。 电源的核心部分是功放电路,这里采用了MOS管构建的双端推挽结构。这种设计可以提升电源效率,因为两个MOS管交替导通,减少了导通压降造成的能量损失。相比于单端正激式电路和全桥整流式电路,双管推挽电路在保持高效的同时,还降低了输出电压的纹波,提升了输出电压的稳定性。 控制策略方面,文章提到了两种方法:数字芯片方案和嵌入式方案。数字芯片方案虽然可以实现基本功能,但在A/D转换和显示上存在困难。相比之下,嵌入式方案,即使用51单片机进行控制,提供了更灵活的编程空间,易于实现A/D和D/A的控制及采样,以及按键扫描显示。因此,51单片机被选作控制核心。 过流保护是电源设计中的重要环节。文中提出了硬件和软件两种实现方式。硬件方案通过比较器和可控硅控制,虽然逻辑性强,但参数设置要求严格,不易实现。相比之下,软件方案利用单片机监控负载电压,控制SG3525的shutdown端口,实现保护功能,既简单又为未来的智能化保护提供了可能。 为了提高电源效率,设计者关注了功放电路和变压器的选择。功放电路采用低导通压降和快速开关特性的MOS管,减少损耗。而在变压器设计上,选择合适的材料和优化绕制工艺,也能有效地减少能量损失。 基于SG3525的开关稳压电源设计结合了高效的PWM控制、优化的功放电路和智能的保护机制,实现了电源的小型化、高效率和稳定性,对于农业领域的电源需求有着显著的经济和实用价值。这种设计思路不仅可以应用于农业,还可以扩展到其他需要稳定电源的工业和民用领域。
2025-12-22 21:23:38 95KB SG3524 开关稳压电源 DC/DC
1
双向DC-DC变换器(Buck-Boost转换器)仿真研究:电压源与蓄电池接口,双闭环控制实现恒流恒压充电与稳定放电,基于MATLAB Simulink的双向DC DC变换器(Buck-Boost转换器)的蓄电池充电与放电仿真研究,双向DC DC变器 buck-boost变器仿真 输入侧为直流电压源,输出侧接蓄电池 模型采用电压外环电流内环的双闭环控制方式 正向运行时电压源给电池恒流恒压充电,反向运行时电池放电维持直流侧电压稳定 matlab simulink ,核心关键词:双向DC-DC变换器; Buck-Boost变换器; 仿真; 直流电压源; 蓄电池; 电压外环电流内环双闭环控制; 恒流恒压充电; 反向运行; MATLAB Simulink。,双向DC-DC变换器仿真:Buck-Boost控制蓄电池充放电
2025-12-16 20:26:56 695KB 数据结构
1
电子通信领域正迅速扩展到日常生活的各个方面。检测、传输和接收数据都需要使用大量器件,例如光纤传感器、RF MEMS、PIN二极管、APD、激光二极管、高压DAC等等。在许多情况下,这些器件需要几百伏的电压才能运行,因此需要使用DC-DC转换器,以满足严格的效率、空间和成本要求。
2025-11-26 10:13:29 179KB DC-DC转换器 升压转换器
1
内容概要:本文主要探讨了双有源桥(DAB)变换器在单移相升降压控制下的Matlab仿真研究。DAB变换器作为一种常见的DC-DC变换电路,在电力电子领域有着广泛应用。文中详细描述了正向升压和反向降压两种情况下的仿真过程。对于正向升压,低压侧初始电压为100V,负载高压侧最终达到400V,通过调整移相角φ实现了电压的平稳过渡;而反向降压则是将高压侧200V降至低压侧100V,同样依靠单移相控制完成。此外,还提到了三篇重要参考文献,分别从不同角度阐述了DAB变换器的工作原理及其优化方法。 适合人群:从事电力电子领域的研究人员和技术人员,尤其是对DC-DC变换器感兴趣的学者和工程师。 使用场景及目标:适用于需要深入了解DAB变换器单移相控制机制以及进行相关仿真的场合。目标是帮助读者掌握如何利用Matlab工具模拟并优化DAB变换器的性能。 其他说明:文中提到的三篇参考文献提供了更多理论支持和技术细节,有助于进一步探索DAB变换器的设计与改进。
2025-11-19 10:11:20 606KB
1