在本文中,将详细解析由缪龙、江云坤和郑士标撰写的论文《双Jaynes-Cummings模型下两个腔场贝尔非定域性的演化特性》中提到的关键概念与知识点。 论文的标题中提到的“Bell-nonlocality”,指的是贝尔非定域性。在量子力学中,贝尔非定域性通常与贝尔不等式有关,贝尔不等式是用于判断两个粒子之间是否存在量子纠缠的理论基础。当两个粒子纠缠时,它们的量子状态不能被描述为独立的个体,而是表现为一个整体。这意味着对其中一个粒子的测量会立即影响到另一个粒子的状态,即使两者相隔很远,这种现象超出了经典物理学的预测,称为量子非定域性。 接下来,论文讨论了双Jaynes-Cummings模型。Jaynes-Cummings模型是量子光学中一个非常著名的理论模型,用于描述二能级原子与一个量子化的电磁场(例如光腔中的场)相互作用的情况。双Jaynes-Cummings模型扩展了传统的Jaynes-Cummings模型,用于描述两个光腔中二能级原子与两个量子化电磁场的相互作用,这使得研究者可以在两个独立的腔场中同时观测到量子纠缠和非定域性的演化特性。 文章描述了两个初始处于纠缠态的宏观腔场的贝尔非定域性演化特性,这涉及到了量子纠缠态的研究。量子纠缠是量子计算和量子信息处理不可或缺的元素。量子纠缠现象指的是两个或多个粒子以这样的方式相互关联:一个粒子的量子状态无法独立于其他粒子的量子状态进行描述,它们共同形成了一个不可分割的整体。然而,量子纠缠并不稳定,受到外界因素的影响,如与真空噪声的相互作用,纠缠态可能会逐渐减弱,甚至完全消失,这种现象被称为“纠缠突然死亡”(Entanglement Sudden Death,ESD)。 论文进一步研究了原子跃迁频率和腔场频率之间的失谐量如何影响两个宏观腔场贝尔非定域性的演化。失谐量(Detuning)是指原子跃迁频率与腔场频率不匹配时的差值。在量子系统的相互作用中,失谐是一个重要参数,它决定了量子系统能量交换的动态过程。在量子光学的实验中,通过调节失谐量可以控制腔内原子与场的耦合强度,进而影响量子态的演化特性。 此外,文章还探讨了两个耦合强度之间的差异对贝尔非定域性的影响。在双Jaynes-Cummings模型中,两个腔场与各自对应原子的耦合强度可能不同,这种不对称性可能会导致量子态的演化展现出复杂的动力学行为。 本文还提到了与ESD相似的现象,即贝尔非定域性突然死亡(Bell-nonlocality sudden death,BNSD)。这一点表明,在某些特定条件下,多部分的Bell-不等式违反(即表明非定域性的量子关联存在)可以在有限时间内突然消失。这一点强调了量子系统演化中可能出现的不连续和突发性变化。 以上内容基于对论文标题、描述和部分内容的深入解析,对论文中所涉及的贝尔非定域性、双Jaynes-Cummings模型、量子纠缠、纠缠突然死亡以及量子态演化的失谐影响等关键概念进行了详细阐述。通过对这些概念的深入理解,可以更好地把握本文在量子物理、量子信息科学以及量子光学领域中所做出的理论探索和实验研究的贡献。
2025-09-10 23:08:00 322KB 首发论文
1
### DDR JESD标准概述与关键技术点 #### 标题:DDR JESD标准 **DDR JESD标准**是JEDEC(Joint Electron Device Engineering Council)组织为规范双倍数据速率(Double Data Rate, DDR)同步动态随机存取内存(SDRAM)而制定的一系列技术规格文档之一。该标准定义了DDR SDRAM的基本要求,旨在确保不同制造商之间产品的兼容性和互操作性。 #### 描述:关键特性与要求 该规格文档定义了最小集的需求标准,适用于X4、X8和X16配置的DDR SDRAM。厂商会根据自身具体格式提供单独的数据表,这些数据表将包含可选功能或超出基本标准的规格。因此,在设计或选择DDR SDRAM时,除了参考JESD标准外,还需要参考各个制造商提供的详细规格表。 #### 内容概述 文档的第一页概述了DDR SDRAM的关键特性和通用描述: 1. **双倍数据率架构**:DDR SDRAM利用了双倍数据率架构,实现了每个时钟周期内两次数据传输。这种设计极大地提高了内存带宽,从而提升了系统的整体性能。 2. **双向数据选通信号(Data Strobe, DQS)**:为了在接收端准确地捕获数据,DDR SDRAM采用了双向的数据选通信号DQS。DQS信号与数据一同传输,并在读操作中与数据边沿对齐,在写操作中则与数据中心对齐。 3. **差分时钟输入**:DDR SDRAM使用差分时钟输入(CK和CK#),以提高时钟信号的质量并减少噪声干扰。 4. **数据锁相环(DLL)**:通过数据锁相环(DLL)技术来确保DQ和DQS信号的边沿与CK时钟信号的边沿对齐,从而进一步提高数据传输的稳定性。 5. **命令同步**:所有命令都必须在每个CK正沿触发,而数据和数据掩码(DM)则参考DQS的两个边沿进行定位。 6. **四个内部银行**:DDR SDRAM内部包含四个独立的银行,支持并发操作,从而提升访问效率。 7. **数据掩码(DM)**:用于写入操作的数据掩码功能,允许用户有选择性地写入部分数据位而不影响其他位。 8. **突发长度**:支持2、4或8的突发长度选项,以适应不同的数据传输需求。 9. **CAS延迟(CL)**:支持2或2.5个时钟周期的CAS延迟,DDR400还增加了CL=3的支持。 10. **自动预充电**:每个突发访问后可选择自动预充电选项,以提高系统效率。 11. **自动刷新和自刷新模式**:提供了自动刷新和自刷新两种模式,以维持存储器中的数据完整性。 12. **电源电压**: - VDDQ:对于DDR200、266或333,电压范围为+2.5V±0.2V;对于DDR400,则为+2.6±0.1V。 - VDD:对于DDR200、266或333,电压范围为+3.3V±0.3V或+2.5V±0.2V;对于DDR400,则为+2.6±0.1V。 13. **通用描述**:DDR SDRAM是一种高速CMOS动态随机存取内存,内部配置为四银行DRAM。它包含了不同的位数容量,例如64Mb(67,108,864位)、128Mb(134,217,728位)、256Mb(268,435,456位)、512Mb(536,870,912位)和1Gb(1,073,741,824位)等。 ### 总结 DDR SDRAM标准的核心在于通过采用双倍数据率架构、双向数据选通信号(DQS)、差分时钟输入、数据锁相环(DLL)以及支持多个内部银行等关键技术,显著提高了内存带宽和访问速度。同时,该标准还规定了一系列电源电压和接口要求,确保了DDR SDRAM芯片之间的兼容性和互操作性。这些特点使得DDR SDRAM成为了高性能计算、服务器、工作站以及消费电子设备中不可或缺的重要组件。
2025-08-07 10:13:35 672KB DOUBLE DATA RATE (DDR)
1
### Adaptive Double-Threshold Energy Detection Algorithm for Cognitive Radio #### 摘要与背景 本文提出了一种自适应双阈值能量检测算法(Adaptive Double-Threshold Energy Detection Algorithm, ADTED),该算法针对传统频谱感知算法易受噪声影响的问题进行了改进。在认知无线电系统中,次级用户(Secondary User, SU)可以通过感知频谱空洞来利用未被初级用户(Primary User, PU)使用的频段。因此,频谱感知技术是认知无线电技术的核心,对于提高网络吞吐量和灵活性至关重要。 #### 算法原理 ADTED算法基于传统的能量检测方法,但通过引入自适应双阈值机制提高了性能。该机制允许算法根据观测结果与预设阈值之间的比较,在单轮感知和双轮感知之间自动切换。具体来说: - **单轮感知**:如果观测结果低于较低的阈值,则认为频段未被占用。 - **双轮感知**:如果观测结果位于两个阈值之间,则进行第二次更长时间的感知以提高检测准确性。 - **频谱占用确认**:只有当观测结果高于较高的阈值时,才认为频段被占用。 #### 数学模型与分析 为了评估算法性能,文中推导了检测概率、虚警概率以及感知时间的数学表达式。这些表达式对于理解算法在不同信号噪声比(Signal-to-Noise Ratio, SNR)下的行为至关重要。 - **检测概率**(Probability of Detection, Pd):表示正确检测到初级用户存在的概率。 - **虚警概率**(Probability of False Alarm, Pf):表示错误地将不存在初级用户的频段识别为存在初级用户的情况。 - **感知时间**:完成一次完整感知过程所需的时间。 #### 模拟与实验验证 通过蒙特卡罗模拟方法,对ADTED算法进行了性能验证,并绘制了SNR与检测概率、SNR与感知时间之间的关系图。此外,还在基于GNU Radio和通用软件无线电外设(Universal Software Radio Peripheral, USRP)的真实认知无线电系统上进行了实验验证。实验结果表明,与现有频谱感知方法相比,ADTED算法能够在合理的时间内实现更高的检测概率。 #### 结论 本文提出的ADTED算法通过引入自适应双阈值机制显著提高了认知无线电系统中的频谱感知性能。该算法能够有效应对噪声干扰问题,并在保持合理感知时间的同时,提高了检测准确率。这对于提升认知无线电系统的整体性能具有重要意义。 #### 关键词解析 - **能量检测**(Energy Detection, ED):一种基本的频谱感知方法,通过测量接收信号的能量来判断频段是否被占用。 - **软件无线电**(Software Radio):一种可以由软件定义其功能的无线电通信系统。 - **检测概率**(Probability of Detection, Pd):衡量算法正确检测到初级用户存在的能力。 - **感知时间**(Sensing Time):完成一次频谱感知操作所需的时间长度。 ### 总结 本文详细介绍了一种适用于认知无线电的自适应双阈值能量检测算法。该算法通过对传统能量检测方法的改进,有效地解决了噪声敏感性问题,并在理论分析、模拟仿真及实际测试等多个层面上验证了其优越性。对于进一步提高认知无线电系统的频谱利用率和性能具有重要的理论意义和应用价值。
2025-06-17 20:23:54 399KB 研究论文
1
大小端转换,支持double,float,整型数据,方便使用,移植
2024-12-08 21:55:38 4KB
1
LPDDR5 SDRAM is a high-speed synchronous SDRAM device internally configured with 1 channel containing either 16 or 8 DQ signals. The bank architecture is user-selectable, and can be either eight banks (8B Mode), four banks with four bank groups (BG Mode), or sixteen banks (16B Mode). See 2.2.3 for more information. LPDDR5(Low Power Double Data Rate 5)协议是针对移动设备的一种高速、低功耗内存标准,由JEDEC固态技术协会制定。这个标准旨在提高数据传输速率,同时降低能耗,以满足现代智能手机、平板电脑和其他便携式设备的需求。 LPDDR5内存模块采用同步动态随机存取存储器(SDRAM)设计,内部结构包含1个通道,通道内有16或8条数据信号线(DQ)。这种设计允许更高效的数据处理,尤其是在高数据速率的应用中。协议提供三种不同的银行架构供用户选择:八银行模式(8B Mode)、四银行四银行组模式(BG Mode)以及十六银行模式(16B Mode)。每种模式都有其特定的优势,例如,更多的银行可以提高并行操作能力,从而提升内存性能。 在八银行模式下,内存被划分为八个独立的访问单元,每个银行可以独立地进行读写操作,提高了并发处理能力。四银行四银行组模式进一步扩展了并行性,通过四个银行组,每个组内有两个银行可以同时工作。而在十六银行模式下,内存的并发处理能力达到最大,适合需要极高数据吞吐量的应用。 LPDDR5相比于前一代LPDDR4/4X,在速度上有显著提升。它支持高达6400MT/s的数据传输速率,相比LPDDR4X的最高3200MT/s翻了一倍。更高的速度意味着更快的系统响应时间和更流畅的多任务处理。此外,LPDDR5引入了能量效率优化的特性,如Data Bus Inversion (DBI)技术,该技术通过反转数据总线上的信号来减少电源切换,从而降低功耗。还有Write X功能,当写入操作为零时,会跳过不必要的电源转换,进一步节省能源。 另外,LPDDR5引入了UDIMM(User Data Integrity Monitor)和CMD Error Correction Code (ECC)等错误检测和纠正机制,增强了数据的完整性和系统的稳定性。UDIMM能够实时监测数据错误,而CMD ECC则对命令和地址总线进行纠错,确保内存操作的准确性。 LPDDR5协议通过提供更高的数据速率、更低的功耗以及增强的错误纠正机制,提升了移动设备的性能和能效。随着移动设备对计算能力和续航能力要求的不断提升,LPDDR5成为了新一代移动设备内存的标准选择。
2024-08-02 17:45:39 10.51MB
1
### LPDDR4(低功耗双倍数据速率4)JESD209-4E标准解析 #### 标准概述 《低功耗双倍数据速率4 (LPDDR4)》是JEDEC(固态技术协会)发布的一项重要标准,其最新版本为JESD209-4E,修订于2021年6月,并于2024年6月正式发布。这一标准主要针对低功耗内存技术进行了详细规定,旨在促进内存产品的标准化、互换性和性能提升。 #### LPDDR4技术简介 **LPDDR4**是一种专为移动设备设计的低功耗动态随机存取内存技术。它继承了前代LPDDR3的优点,并在带宽、能效等方面进行了显著改进。该技术广泛应用于智能手机、平板电脑等便携式电子设备中,以满足这些设备对高性能与低功耗的双重需求。 #### 技术特点 1. **高带宽:**LPDDR4支持高达3200MT/s的数据传输速率,相较于LPDDR3有了显著提高。 2. **低功耗:**通过多种节能机制和技术,如更低的工作电压(1.1V),LPDDR4能够在保持高性能的同时大幅度降低能耗。 3. **可扩展性:**LPDDR4支持更灵活的容量扩展方案,包括多芯片封装技术,以满足不同应用的需求。 4. **可靠性与稳定性:**采用了先进的纠错码(ECC)技术,提高了数据传输的可靠性和系统的整体稳定性。 5. **易用性:**LPDDR4简化了设计复杂度,使得设计者能够更容易地将其集成到各种系统中。 #### 技术细节 - **工作电压:**LPDDR4采用1.1V的标准工作电压,相比前代产品降低了功耗。 - **数据传输速率:**最高可达3200MT/s,有效提升了数据吞吐量。 - **地址/命令/控制信号:**这些信号的接口被优化,以提高信号完整性并减少电磁干扰。 - **电源管理:**引入了多种电源管理模式,如深度睡眠模式,进一步降低了功耗。 - **存储器组织:**LPDDR4支持更高密度的存储单元组织,有助于实现更大容量的内存模组。 - **温度范围:**支持广泛的温度范围,确保在不同环境下的稳定运行。 #### 标准制定目的 - **消除误解:**标准的制定有助于消除制造商与购买者之间的误解。 - **产品互换性:**通过标准化,促进了不同品牌内存产品之间的互换性。 - **性能改进:**标准的制定有利于推动技术进步,从而提高内存产品的整体性能。 - **便于选择:**为购买者提供了明确的选择指南,帮助他们快速找到适合的应用产品。 #### 标准适用范围 JEDEC标准适用于所有内存制造商和用户,无论是JEDEC成员还是非成员。这些标准不仅在国内得到广泛应用,在国际市场上也具有很高的认可度。 #### 结论 LPDDR4 JESD209-4E标准代表了当前低功耗内存领域的最先进技术。通过不断的技术迭代和完善,LPDDR4不仅在性能上实现了突破,还在功耗控制方面取得了显著成就,极大地推动了移动计算领域的发展。对于设计师和制造商来说,理解和掌握这一标准将有助于他们开发出更加高效、节能的产品。
2024-07-31 15:17:38 6.33MB LPDDR4
1
摄像机标定matlab代码 Double-target Author HoshinoKun E-mail 目录 介绍 一款摄像头的双目测距程序,包含了标定用图以及标定数据,使用Matlab标定工具箱标定 包含两种像素的不同代码及标定图片与结果 运行 当想使用摄像头拍照时,请使用 python cap.py 当拍照完成后,使用MATLAB工具箱标定相机,得到的数据类似Calib_Results_stereo_data.txt内所描述,将其手工填至camera_config.py内,使用 python test.py 在代码内含有两种不同的匹配算法,可手动调节,BM算法速度较快,SGBM算法精确度较高,默认使用SGBM算法
2024-05-12 15:52:30 92.73MB 系统开源
1
JEDEC STANDARD Low Power Double Data Rate (LPDDR) 5/5X JESD209-5C (Revision of JESD209-5B, June 2021) June 2023
2024-03-27 09:14:55 28.86MB lpddr lpddr5
1
防止Doubledouble后形成科学计数法问题
2023-03-26 13:23:12 175B 科学计数法
1
一种简单快速的生成双随机矩阵的算法。 (矩阵,其中每列和每行的总和正好是 1)。 每个矩阵都是从所有 NxN 双随机的空间中统一选择的矩阵。 注意:生成的矩阵确实是双随机的,但不是证明/检查该算法确实生成了矩阵 UAR。 生成双随机矩阵的简单算法(矩阵,其中每列和每行的总和正好是 1)。 算法: 1. 为每个 1<=i,j<=N 设置一个 NxN 矩阵 TM st TM[i,j] = 1/N。 2. 对于 X 次迭代: 3. 在 [1,...,N] 上绘制 i1, j1, i2, j2 UAR。 4. 在 (0, min {TM[i1, j1], TM[i2, j2]}) 上绘制 d UAR。 5. M[i1,j1] <= M[i1,j1] - d; 6. M[i2,j2] <= M[i2,j2] - d; 7. M[i1,j2] <= M[i1,j2] + d; 8. M[i2,j1
2023-03-15 16:41:13 2KB matlab
1