Algorithms for constructing decision trees are among the most well known and widely used of all machine learning methods. Among decision tree algorithms, J. Ross Quinlan's ID3 and its successor, C4.5, are probably the most popular in the machine learning community. These algorithms and variations on them have been the subject of numerous research papers since Quinlan introduced ID3. Until recently, most researchers looking for an introduction to decision trees turned to Quinlan's seminal 1986 Machine Learning journal article [Quinlan, 1986]. In his new book, C4.5: Programs for Machine Learning, Quinlan has put together a definitive, much needed description of his complete system, including the latest developments. As such, this book will be a welcome addition to the library of many researchers and students.
2022-09-27 23:39:38 10.85MB J.R.Quinlan. C4.5 Machine Learning
1
The classical article in decision trees
2021-12-28 20:24:50 1.77MB decision trees
1
ID3和C4.5决策树学习算法的实现 通过使用ID3和C4.5算法实现决策树并生成F1分数。 在UCI机器学习蘑菇数据集上进行测试 入门:将“ Project1_N01412075_Resubmission”文件夹下载到本地驱动器。 This folder has 1) Project1_Mushroom_DT_N01412075.py - A file that contains source code for the implementation. 2) Mushroom folder that has 10 smaller training files(used for cross validation), 1 larger training file (which is a concatenation of all the smaller files) and a final
2021-09-29 11:20:29 311KB Python
1
Introduction of decision trees_J.R. Quinlan;ID3
2019-12-21 18:50:25 1.33MB Introduction of decision trees
1