利用Matlab/Simulink进行非线性悬架系统的模块化建模及其状态估计的方法。首先,针对空气悬架的非线性特性,使用S函数构建了带有双曲正切刚度特性的空气弹簧模型。接着,深入探讨了Unscented Kalman Filter (UKF) 在非线性系统中的优势,并展示了如何在Simulink中实现UKF的状态预测和更新。文中还讨论了模型验证过程中遇到的问题以及解决方案,如通过引入加速度自适应因子来提高估计精度,避免代数环问题以提升仿真效率。最后,强调了模块化建模的优势,特别是对于复杂系统的扩展性和维护性。 适用人群:对车辆工程、控制系统设计感兴趣的工程师和技术人员,尤其是那些希望深入了解非线性悬架系统建模及状态估计的人群。 使用场景及目标:适用于需要精确估计悬架系统状态(如动挠度)的应用场合,旨在帮助读者掌握非线性悬架系统的建模技巧和UKF状态估计的具体实现方法,从而为实际工程项目提供理论支持和技术指导。 其他说明:随附有详细的建模说明文档、Simulink源码文件及相关参考资料,便于读者理解和实践。建议从简单的线性模型开始,逐步增加非线性因素,确保UKF能够顺利收敛并获得准确的状态估计结果。
2025-11-26 14:40:15 389KB
1
内容概要:本文介绍了使用Matlab编写无迹卡尔曼滤波(UKF)算法实现锂电池SOC(荷电状态)估计的完整方法,包含状态方程建模、sigma点生成、协方差预测与更新等UKF核心步骤,并引入噪声系数自适应机制以提升滤波鲁棒性。采用二阶RC等效电路模型,结合OCV-SOC关系进行状态预测,通过新息检测动态调整过程噪声Q和观测噪声R,有效应对模型偏差。与传统EKF相比,UKF避免了雅可比矩阵计算,在SOC平台区具有更高估计精度。 适合人群:具备Matlab编程基础、熟悉电池管理系统(BMS)开发的工程师或研究生,尤其适合从事状态估计、滤波算法研究的技术人员。 使用场景及目标:①实现锂电池SOC高精度估计;②掌握UKF在非线性系统中的应用;③理解并实现噪声自适应策略以提升滤波器实际运行稳定性。 阅读建议:建议结合Matlab仿真环境运行代码,重点关注状态方程、sigma点传播及噪声自适应逻辑,可进一步替换为实测数据验证算法性能。
2025-11-23 12:34:56 386KB
1
在现代工业自动化领域,机器人视觉技术的应用越来越广泛。机器人的视觉系统可以帮助机器人感知周围环境,理解任务目标,从而做出相应的动作。UR5作为一款轻量级的协作机器人,以其灵活性和易用性成为科研和工业应用中的常见选择。在进行机器人视觉研究时,Gazebo作为一款流行的机器人仿真平台,提供了一个模拟真实世界环境的平台,便于进行各种视觉算法的测试和优化。 SIFT(尺度不变特征变换)算法是一种局部特征提取方法,它能在图像中提取出具有尺度不变性的关键点,并对这些关键点进行描述,从而实现对物体的快速、准确识别,尤其在物体发生旋转、缩放或亮度变化时仍然具有良好的稳定性和区分度。在机器人视觉系统中,SIFT算法常常被用于物体位姿的估计,这对于机器人准确抓取目标物体至关重要。 在本文档“机器人视觉_UR5_Gazebo_抓取_SIFT位姿估计Ma_1743961359.zip”中,可以推断其主要内容将涉及如何将UR5机器人的抓取任务与SIFT位姿估计算法结合,并在Gazebo仿真环境中进行测试和验证。通过在Gazebo中模拟UR5机器人视觉系统的操作,研究者能够评估SIFT算法在真实世界环境下的性能表现,并对算法进行调整以提高其准确性和效率。 文档的具体内容可能会包括以下几个方面: 1. UR5机器人介绍:UR5是UR家族中的一个成员,以其6自由度的设计,能够执行复杂的空间运动任务。在文档中,可能会详细描述UR5的结构特点、运动范围、控制方式等基本信息。 2. Gazebo仿真环境搭建:文档会介绍如何在Gazebo中搭建UR5机器人模型,并设置仿真场景,包括机器人的安装位置、仿真环境的光照和纹理等因素。 3. 机器人视觉系统构建:这部分内容将涉及到视觉系统的设计,包括摄像头的选择、安装位置、分辨率等参数的设置。 4. SIFT位姿估计算法实现:文档会详细介绍SIFT算法的原理以及在UR5机器人中的实现方式,包括关键点检测、特征描述子提取、关键点匹配等步骤。 5. 抓取任务设计:文档会探讨如何利用SIFT算法进行物体位姿估计,并基于此估计指导UR5机器人的抓取动作。这可能包括抓取点的选择、抓取路径规划以及抓取动作的实现。 6. 测试与评估:文档可能会展示一系列的测试实验,包括在不同条件下的抓取成功率、算法的稳定性和效率等评估指标。 通过这些内容的深入研究,可以帮助开发者更好地理解UR5机器人在Gazebo仿真环境下的视觉抓取能力,以及如何通过SIFT算法提高抓取的准确性和效率。这不仅对学术研究具有重要意义,也为工业领域提供了实用的技术参考和解决方案。
2025-11-21 16:25:39 56.17MB
1
运动估计算法的研究与fpga验证-学位论文.doc
2025-11-17 22:12:55 2.62MB
1
内容概要:本文探讨了现代车辆控制系统中难以实时测得整车质量和道路坡度的问题,基于车辆纵向动力学模型,详细介绍了无迹卡尔曼滤波(UKF)算法的设计与实现,并通过CarSim与MATLAB/Simulink联合仿真,比较了双遗忘因子递归最小二乘法(RLS-MFF)、扩展卡尔曼滤波(EKF)和UKF三种算法在这两个参数估计中的效果。实验结果显示,UKF算法在估计精度方面表现出色,尽管实时性稍逊,但仍能满足实际应用的需求。 适合人群:从事车辆控制、自动驾驶技术和先进驾驶辅助系统(ADAS)的研究人员和技术人员。 使用场景及目标:① 提供一种有效的整车质量和道路坡度同步估计算法,以提升车辆控制系统的性能;② 改善自适应巡航控制系统(ACC)、自动紧急制动系统(AEB)等ADAS的性能;③ 为剩余续航里程预测和换挡策略优化提供支持。 其他说明:文中还讨论了基于传感器和基于模型的不同估计方法,并详细解释了UKF算法的具体实现步骤以及与其他两种算法的对比分析。
1
资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 OpenPose关键点识别速查笔记 —————————————— 1 整体思路 把RGB图拆成两个并行的置信图分支: 身体18点 PAFs(Part Affinity Fields) 手/脸/足 高分辨热图 用CNN同时估计,后接贪婪匹配→拼装骨架。 2 网络结构 输入:368×368×3 前段:VGG19前10层→特征F 中段:6级级联 refine,每级含: PCM(关键点热图) + PAF(肢体向量场) 双分支 末段:上采样×4→高分辨率手/脸/足热图(输出尺寸 96×96)。 3 关键点定义 身体18点:0鼻1颈2右肩3右肘…17头顶 手21点:掌心→五指关节 脸70点:轮廓、眉、眼、鼻、嘴 足6点:大/小趾、脚跟 4 PAF 拼装流程 (1) 取PCM中局部极值>阈值得候选点 (2) 对每类肢体(如右前臂) a. 计算两端点对连线 b. 采样10点,累加PAF方向一致性得分 c. 匈牙利算法最大权重匹配→成对 (3) 重复(2)直至全身骨架。 5 训练细节 数据增强:随机旋转±30°、尺度0.5-1.5、半身遮挡 损失:均方误差,难样本权重×3 迭代:1e-4 Adam,前60k步冻结VGG,后40k全调。 6 推断加速 半精度FP16,批处理4帧 先用低分辨率检出人体框,再裁出子图精修手/脸 多线程:CPU后处理,GPU前向。 7 可视化速读 图1:输入图 → 图2:PCM叠加 → 图3:PAF箭头 → 图4:最终骨架 红=高置信,蓝=低置信。 8 误差排查清单 漏检:降低阈值/增尺度 抖动:使用光流平滑 自遮挡:加侧面训练数据。
2025-11-13 10:24:19 250B 姿态估计 PPT资源
1
离网DOA估计的径向稀疏贝叶斯学习MATLAB代码__MATLAB codes for _Root sparse Bayesian learning for off-grid DOA estimation_.zip 在信号处理领域,方向到达(Direction of Arrival, DOA)估计一直是研究的热点。离网DOA估计关注于在缺乏精确阵列流型信息的情况下,对入射信号的方向进行估计。径向稀疏贝叶斯学习(Root Sparse Bayesian Learning, root-SBL)是一种新兴的算法,它利用贝叶斯推断框架,通过稀疏性先验信息实现对信号参数的估计。这种方法尤其适用于多源信号环境,能够有效分离和定位来自不同方向的信号。 径向稀疏贝叶斯学习作为一种统计信号处理方法,其核心在于通过引入稀疏先验信息来增强信号检测的准确性。在实际应用中,这一算法能够处理信号源非严格稀疏的情况,对于非网格(off-grid)场景同样有效。传统的DOA估计方法,如多重信号分类(MUSIC)和最小范数法(MNM),在面对离网问题时存在估计偏差和分辨率低下的问题,而root-SBL算法通过迭代优化,能够克服这些问题,提供更为精确的估计。 root-SBL算法的实现通常涉及到复杂的数学推导和数值计算。在MATLAB环境中,通过编写特定的代码来实现该算法,可以为研究者和工程师提供一个直观且易于操作的工具。这些MATLAB代码通常包含了信号的生成、模型参数设置、算法参数调整以及最终的性能评估等多个环节,为用户提供了完整的实验流程。 在算法的MATLAB代码实现中,可以观察到以下几个关键步骤: 1. 初始化参数:包括信号源的数量、信噪比(SNR)、阵列的配置等。 2. 信号模型构建:基于已知或假设的信号和噪声模型来构建信号的统计特性。 3. 迭代更新:通过迭代过程不断更新信号的估计值,直到满足收敛条件。 4. 结果分析:对估计得到的DOA结果进行分析,包括误差统计和分辨率分析等。 对于root-SBL算法的MATLAB实现而言,其代码通常需要精心设计以确保计算效率和结果的准确性。这些代码可能涉及矩阵运算、优化算法以及性能评估等多个方面。在用户界面上,应当提供友好的交互功能,以便用户能够方便地进行实验设置和结果查看。 离网DOA估计的径向稀疏贝叶斯学习MATLAB代码提供了一个强大的工具,用于在复杂的信号环境中准确地估计信号的到达方向。该算法和代码实现了将理论算法与实际应用相结合,为相关的学术研究和工程实践提供了有力的支持。
2025-11-10 19:15:27 2KB matlab
1
任意线性阵列DOA估计的实值稀疏贝叶斯学习MATLAB代码__MATLAB codes for _Real-valued sparse Bayesian learning for DOA estimation with arbitrary linear arrays_.zip 在信号处理领域,方向到达(DOA)估计一直是一个重要的研究课题,它旨在确定声波或电磁波等信号源的来向。线性阵列由于其结构简单、易于实现而被广泛应用于DOA估计。然而,传统线性阵列DOA估计方法存在诸如分辨率低、计算复杂度高等问题。近年来,贝叶斯学习方法因其在处理不确定性信息方面的优势,为解决这些问题提供了新的思路。 稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)是一种基于贝叶斯框架的机器学习方法,它利用稀疏性先验来推断数据中隐含的稀疏结构。SBL方法通过引入超参数来控制数据的稀疏性,同时利用证据近似法(如变分贝叶斯法)来估计超参数,从而达到更加精确的DOA估计效果。与传统的最大似然估计、最小二乘估计等方法相比,SBL不仅能够提高分辨率,还能有效抑制噪声,提高估计的稳健性。 在实现SBL方法时,由于其涉及到的计算复杂度较高,因此需要采用高效的数值算法。MATLAB作为一个高性能的数学计算软件,提供了丰富的函数库,适用于快速实现各种算法。MATLAB代码能够有效地处理矩阵运算,方便地实现SBL算法,因此成为科研人员进行算法仿真的首选工具。 本文所介绍的MATLAB代码,提供了实现任意线性阵列下基于实值稀疏贝叶斯学习的DOA估计的方法。该代码能够适应不同的阵列结构和信号条件,通过调节参数能够灵活地应用于多种场景。代码的主要步骤包括数据的采集、信号的预处理、SBL算法的实现以及DOA的估计结果输出。其中,SBL算法的核心步骤包括确定超参数、构建概率模型、进行迭代求解等。 代码的运行环境包括基本的MATLAB软件和必要的工具箱支持。使用该代码进行DOA估计时,研究人员首先需要准备相应的信号数据文件,并设置好线性阵列的参数,如阵元间距、信号源的数目等。然后运行MATLAB代码,程序将自动执行SBL算法,输出信号源的方向角度估计值。 此外,该代码还具有良好的扩展性和模块化设计,便于科研人员针对特定的需求进行算法的修改和优化。对于从事信号处理、阵列信号处理、模式识别等领域的研究者而言,此代码库是进行算法验证和创新实验的有力工具。 通过使用MATLAB代码实现的任意线性阵列DOA估计的实值稀疏贝叶斯学习方法,为处理DOA估计问题提供了高效而精确的解决途径。这一方法不仅能够提高估计的精度和分辨率,还能在噪声存在的情况下保持较高的稳健性,为实际应用提供了重要的技术支持。随着研究的深入和技术的发展,该方法有望在雷达、声纳、无线通信等多个领域得到更广泛的应用。
2025-11-10 19:14:41 3KB matlab
1
波达方向估计算法是信号处理领域中的一种关键技术,尤其在多天线阵列系统中,用于估计多个信号源的到达方向。这一技术在雷达、声纳、通信、地球科学和医学等多个领域都有广泛的应用。清华大学的彭应宁教授在《波达方向估计算法及应用新进展.ppt》中详细阐述了DOA估计的不同方法及其最新发展。 1. **引言** - 波达方向(DOA)估计涉及多天线阵列信号处理,用于确定信号源相对于接收器阵列的方向。 - DOA估计可以分为常规方法(如波束形成法)和现代超分辨方法,后者包括MUSIC、ESPRIT、SVD和WSF等,它们能突破瑞利限,提供更高的分辨率。 - 应用包括雷达无源定位、反多径效应、声纳阵列测向、电子或通信干扰侦察、地震探测、移动通信和医学成像等。 2. **常规DOA估计法** - **波束形成法**:通过天线阵列(如线阵、圆阵或任意阵)对信号进行加权和,形成定向波束来估计DOA。它假设信源位于远场、信号是窄带的,且信源数量小于阵列元素数。阵列元素间的相位差被用来计算DOA。 3. **MUSIC算法** - **超分辨DOA估计**:MUSIC(Multiple Signal Classification)算法是由R.O.Schmidt提出的,它能够提供远超传统波束形成法的分辨率。 - 在数学模型中,每个阵列元素接收到的信号是所有信源信号的线性组合,MUSIC算法通过构造并搜索噪声子空间,找到与信号子空间正交的方向,从而实现超分辨DOA估计。 4. **空间平滑MUSIC方法** - 包括单向和双向空间平滑MUSIC方法,这些方法通过增加空间分辨率,进一步提高DOA估计的精度。 5. **分布式信源DOA估计** - 当信号源分布在不同的位置时,需要特殊的DOA估计方法来处理这种情况。 6. **DOA估计的应用** - 智能天线系统在移动通信中利用DOA估计来提高通信质量和抗干扰能力。 - 手机用户自动定位在蜂窝通信中借助DOA技术,可以实现更精确的用户定位服务。 - 无源定位利用DOA估计技术,可以在不直接发射信号的情况下检测和定位目标。 7. **前沿课题** - 波达方向估计技术的研究前沿可能包括新的算法开发、多模态信号处理、阵列设计优化以及在复杂环境下的DOA估计方法等。 波达方向估计算法是一种重要的信号处理技术,它在理论和实际应用上都有着广泛的研究和发展。随着科技的进步,DOA估计的新方法不断涌现,为各种领域的信号检测和定位提供了更为精确的工具。
2025-11-10 10:18:13 1.19MB 波达方向估计
1
离网DOA估计的径向稀疏贝叶斯学习MATLAB代码__MATLAB codes for _Root sparse Bayesian learning for off-grid DOA estimation_.zip 径向稀疏贝叶斯学习(Root Sparse Bayesian Learning, Root SBL)是一种用于信号处理的高级统计算法,尤其在方向估计(direction of arrival, DOA)领域中发挥了重要作用。DOA估计是指确定声波或电磁波等信号源的方向。在许多实际应用场景中,如雷达、声纳、无线通信以及定位系统,DOA估计是一个关键问题,对于系统性能的提升至关重要。 Root SBL算法在处理离散信号源时,能够提供更准确的估计。与其他稀疏表示方法相比,Root SBL不仅具有更高的定位精度,还能够在信号源完全离散的情况下,有效地处理信号。这使得它在信号处理领域受到广泛关注,并成为了一项研究热点。 Matlab是一种广泛应用于算法开发、数据可视化、数值计算的高级语言和交互式环境。Matlab提供了一套丰富的函数库,支持多种算法的快速实现和仿真,包括Root SBL算法。因此,Matlab是研究和实现Root SBL算法的一个理想平台。 在Matlab环境中,Root SBL算法的实现通常涉及复杂的数学运算,包括矩阵运算、向量处理、概率密度函数的估计以及优化算法等。使用Matlab的用户可以便捷地调用各种内置函数,进行数据处理和算法仿真,从而深入研究算法的特性及其在不同场景下的表现。 为了支持研究者和工程师使用Matlab进行Root SBL算法的开发和实验,已有开发者分享了Root SBL算法的Matlab代码包。这些代码包通过封装Root SBL算法的核心功能,使得用户无需从头开始编写复杂算法,大大缩短了开发周期,并减少了实现过程中的错误。 代码包中可能包含了算法实现所需的多个脚本文件,如初始化参数设置、算法参数调整、信号模拟、稀疏表示计算、DOA估计结果输出等。用户可以通过修改这些脚本中的参数,针对具体的应用场景进行算法调整和优化,以获得最佳性能。 Matlab环境下的Root SBL算法代码包,为信号处理领域的研究者和工程师提供了一个强有力的工具,可以方便地实现、测试并优化离网DOA估计技术。它不仅推动了算法的实际应用,也为相关领域的深入研究提供了便利。
2025-11-07 16:35:20 2KB
1