标题中的“SRGAN预训练模型下载”指的是Super-Resolution Generative Adversarial Network(超分辨率生成对抗网络)的预训练模型资源。SRGAN是一种深度学习技术,主要用于图像超分辨率重建,即提高低分辨率图像的质量,使其接近或恢复到原始高分辨率图像的细节。 描述中的链接指向了一个GitHub仓库,该仓库由用户Lornatang维护,专门用于PyTorch实现的SRGAN。这个仓库可能包含了SRGAN的源代码、训练脚本以及预训练模型,这些模型已经在ImageNet数据集上进行了训练。 标签"pytorch pytorch"表明该资源是基于Python的深度学习框架PyTorch开发的,PyTorch提供了灵活的计算图机制和强大的动态计算图支持,适合构建和训练复杂的神经网络模型,如SRGAN。 压缩包子文件的文件名列表中,我们可以看到多个.pth.tar文件,这些通常是PyTorch模型的权重文件,用于保存训练好的网络参数。例如: 1. `DiscriminatorForVGG_x4-SRGAN_ImageNet.pth.tar`: 这个文件可能包含了一个针对VGG架构的判别器网络,用于在x4超分辨率设置下训练的SRGAN模型的权重。 2. `SRResNet_x8-SRGAN_ImageNet.pth.tar`: SRResNet是SRGAN的一部分,它是一个残差网络,用于生成高分辨率图像。这个文件可能是x8超分辨率设置下SRResNet部分的模型权重。 3. `SRGAN_x8-SRGAN_ImageNet.pth.tar`: 这个文件则可能保存了整个SRGAN模型(包括生成器和判别器)在x8超分辨率设置下的训练结果。 此外,还有一个`Set5.zip`文件,Set5是一个常用的图像超分辨率基准测试集,包含高质量的500张高分辨率图像,通常用于评估和比较不同超分辨率算法的性能。 这些资源提供了SRGAN模型在不同超分辨率设置(x2, x4, x8)下的预训练权重,以及一个用于测试模型性能的数据集。对于那些想要在自己的项目中应用或研究超分辨率技术的开发者来说,这是一个非常有价值的资源。通过加载这些预训练模型,可以直接在新的低分辨率图像上进行预测,而无需从头训练模型,大大节省了时间和计算资源。同时,也可以通过查阅源代码来了解SRGAN的具体实现细节,这对于学习和理解深度学习在图像超分辨率领域的应用非常有帮助。
2026-01-16 00:21:16 285.96MB pytorch pytorch
1
在本资源中,我们主要关注的是使用Python实现的SRGAN(Super-Resolution Generative Adversarial Networks,超分辨率生成对抗网络)图像超分重建算法。SRGAN是一种深度学习技术,用于提升低分辨率图像的质量,使其接近高分辨率图像的清晰度。这种算法在图像处理、计算机视觉和多媒体应用中具有广泛的应用。 SRGAN的核心在于结合了生成对抗网络(GANs)与超分辨率(SR)技术。GANs由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器负责根据低分辨率图像创建高分辨率的假象,而判别器则试图区分真实高分辨率图像和生成器产生的假象。通过对抗训练,生成器逐渐改进其生成高分辨率图像的能力,直到判别器无法准确区分真伪。 在这个Python实现中,数据集是训练和评估模型的关键。通常,SRGAN会使用如Set5、Set14、B100、Urban100或DIV2K等标准数据集,这些数据集包含了大量的高清图像,用于训练和测试算法的效果。数据预处理和后处理步骤也是必不可少的,包括图像缩放、归一化和反归一化等操作。 代码实现中,可能会包括以下关键部分: 1. **模型定义**:生成器和判别器的网络结构,通常基于卷积神经网络(CNNs)设计。 2. **损失函数**:除了传统的均方误差(MSE)损失,SRGAN还引入了感知损失(Perceptual Loss),它基于预训练的VGG网络来衡量图像的结构和内容相似性。 3. **优化器**:选择合适的优化算法,如Adam或SGD,调整学习率和动量参数。 4. **训练流程**:定义训练迭代次数,进行交替优化,同时更新生成器和判别器的权重。 5. **评估与可视化**:在验证集上评估模型性能,通过PSNR(峰值信噪比)和SSIM(结构相似性指数)等指标来量化结果,并使用可视化工具展示高分辨率图像。 这个资源可能还包括训练脚本、测试脚本以及如何加载和保存模型的说明。对于初学者,理解并运行这些代码可以帮助深入理解SRGAN的工作原理。同时,对于有经验的研究者,这是一个可以进一步定制和优化的基础框架。 这个Python实现的SRGAN项目不仅提供了对深度学习和图像超分辨率的实践经验,还可以帮助用户掌握如何处理和利用大型数据集,以及如何在实际应用中运用生成对抗网络。对于想要在图像处理领域进行研究或者开发相关应用的人来说,这是一个非常有价值的资源。
2025-04-16 20:06:25 294.23MB python 数据集
1
配套文章:https://blog.csdn.net/qq_36584673/article/details/136861864 文件说明: benchmark_results:保存不同倍数下测试集的测试结果 data:存放数据集的文件夹,包含训练集、测试集、自己的图像/视频 epochs:保存训练过程中每个epoch的模型文件 statistics:存放训练和测试的评估指标结果 training_results:存放每一轮验证集的超分结果对比,每张图像5行3列展示 data_utils.py:数据预处理和制作数据集 demo.py:任意图像展示GT、Bicubic、SRGAN可视化对比结果 draw_evaluation.py:绘制Epoch与Loss、PSNR、SSIM关系的曲线图 loss.py:损失函数 model.py:网络结构 test_benchmark.py:生成benchmark测试集结果 test_image.py:生成任意单张图像用SRGAN超分的结果 test_video.py:生成SRGAN视频超分的结果 train.py:训练SRGAN 使用方法见文章。
2024-08-16 14:23:17 231.09MB pytorch 超分辨率 超分辨率重建 python
1
基于深度学习的SRGAN图像超分重建算法,该资源为本人博客https://wuxian.blog.csdn.net/article/details/125034820中介绍的算法实现代码,包含训练测试数据集和完整代码,代码中已添加完整中文注释,详细原理和代码介绍请参考博客内容。代码已经过调试,可完美运行,关于训练用的COCO数据集下载请见博客给出,注意:请按照博客中给定的python环境和依赖库版本进行安装,否则可能会出现环境不兼容问题。
2023-11-29 16:05:19 297.44MB python 数据集 SRGAN 超分重建
1
srgan-tensorflow超分辨率图像重建
2023-02-15 21:54:54 14.15MB tensorflow 人工智能 python 深度学习
1
尽管使用更快更深的卷积神经网络在单图像超分辨率的准确性和速度方面取得了突破,但一个核心问题仍然很大程度上未解决:当我们在大的升级因子上超分辨时,我们如何恢复更精细的纹理细节?基于优化的超分辨率方法的行为主要由目标函数的选择驱动。近期工作主要集中在最小化均方重建误差。由此产生的估计具有高峰值信噪比,但它们通常缺乏高频细节,并且在感知上它们不能满足在较高分辨率下预期的保真度的感觉上不满意。在本文中,我们提出了SRGAN,一种用于图像超分辨率(SR)的生成对抗网络(GAN)。据我们所知,它是第一个能够推断4倍放大因子的照片般逼真的自然图像的框架。为实现这一目标,我们提出了一种感知损失函数,它包括对抗性损失和内容丢失。对抗性损失使用鉴别器网络将我们的解决方案推向自然图像流形,该网络经过训练以区分超分辨率图像和原始照片真实图像。另外,我们使用由感知相似性驱动的内容丢失而不是像素空间中的相似性。我们的深度残留网络能够在公共基准测试中从严重下采样的图像中恢复照片般逼真的纹理。广泛的平均意见得分(MOS)测试显示使用SRGAN在感知质量方面获得了巨大的显着提升。使用SRGAN获得的MOS分数比使用任何
2022-05-24 21:05:30 156MB 超分辨率 深度学习 图像处理
1
SRGAN源码
2022-05-04 21:06:44 31.59MB 源码软件
1
我们已经将BasicSR合并为MMSR:grinning_face_with_smiling_eyes:MMSR是基于PyTorch的开源图像和视频超分辨率工具箱。 这是香港中文大学多媒体实验室开发的开放式mmlab项目的一部分。 MMSR基于我们的产品我们已经将BasicSR合并到MMSR中:grinning_face_with_smiling_eyes:MMSR是基于PyTorch的开源图像和视频超分辨率工具箱。 这是香港中文大学多媒体实验室开发的开放式mmlab项目的一部分。 MMSR基于我们之前的项目:BasicSR,ESRGAN和EDVR。 SR我们已更新了BasicSR工具箱(v0.1)。 几乎所有文件都有更新,包括:支持PyTorch 1.1和分布式培训简化网络结构更新数据集
2022-04-27 15:18:12 1.24MB Python Deep Learning
1
快速SRGAN 该存储库的目标是实现实时超分辨率,以对低分辨率视频进行升采样。 目前,该设计遵循架构。 但是代替残差块,采用反向残差块以提高参数效率和快速操作。 这种想法在某种程度上受到。 培训设置如下图所示: 速度基准 通过平均800帧以上的运行时间获得以下运行时间/ fps。 在GTX 1080上测得。 输入图像尺寸 输出尺寸 时间(秒) 第一人称射击 128x128 512x512 0.019 52 256x256 1024x1024 0.034 30 384x384 1536x1536 0.068 15 我们看到有可能以30fps的速度将其上采样到720
2022-04-19 15:21:27 620KB neural-network tensorflow cnn tf2
1