COMSOL一维管道流模型:集成非等温流、浓物质传递与化学反应模块,模拟甲烷燃烧多维物理场耦合反应,真实反映粒子空间变化,COMSOL一体化管道流模拟:甲烷燃烧一维模型详解,包含GRI-3.0核心反应及多物理场耦合分析,comsol一维管道流模型,集非等温管道流模块、浓物质传递模块和化学反应模块为一体,三物理场耦合,本模拟以甲烷气体为例进行模拟仿真,涉及了GRI-3.0最为核心的Z40反应和其余的附加反应,反应结果真实可靠,能够准确的模拟甲烷燃烧情况下的摩尔分数变化,浓度变化,温度变化等,通过一维广义拉伸的方式更能直观的反应处物质活性粒子在空间的变化情况。 ,comsol一维管道流模型; 非等温管道流模块; 浓物质传递模块; 化学反应模块; 三物理场耦合; 甲烷气体模拟仿真; GRI-3.0核心反应; 附加反应; 摩尔分数变化; 浓度变化; 温度变化; 一维广义拉伸; 物质活性粒子空间变化。,COMSOL一维管道流模型:三物理场耦合模拟甲烷燃烧反应
2025-05-23 22:26:40 6.71MB 柔性数组
1
论文研究-基于仿真技术的连锁零售企业配送中心布局决策模型.pdf,  合理的配送中心布局可以大大降低企业的物流营运成本和提高物流系统的运营效率.从零售业连锁经营和配送中心 本质特征分析入手,将连锁零售企业的配送中心布局决策问题界定为以设施成本、物流成本和快速反应能力等多重子目标达到最优的多目标多配送中心选址问题.在对影响配送中心选址布局的因素进行定性分析和定量分析的基础上,运用蒙特卡罗静态仿真进行成本分析和Arena动态仿真进行响应时间分析相结合的方法构建了多目标多配送中心布局决策分析模型,并采用AHP和TOPSIS相结合的综合评价方法分析相关指标和数据来确定最优方案. 最后,以一家大型连锁超市作为研究算例, 以珠三角地区作为布局分析区域,构建实物模型以验证决策模型的科学性和有效性.
2025-05-23 21:43:30 1.62MB 论文研究
1
在本文中,我们将深入探讨Three.js,这是一个广泛使用的JavaScript库,用于在Web浏览器中创建和展示3D模型。Three.js是WebGL技术的便捷接口,它使得开发人员无需深入了解底层图形编程,就能轻松构建交互式的三维场景。 我们要了解JavaScript在其中的角色。JavaScript是Web开发中的主要脚本语言,负责处理用户交互、动态内容和页面行为。在Three.js项目中,JavaScript用于创建场景、物体、光源、相机等元素,并控制它们的行为。例如,通过Three.js,我们可以创建一个3D对象,设置其几何形状、材质和纹理,然后将其添加到场景中。同时,我们还可以用JavaScript编写动画函数,使这些对象能够随时间移动或变形。 接着,CSS在Three.js项目中的应用可能并不显而易见,但它是控制2D网页布局和样式的关键。虽然Three.js主要用于3D渲染,但在实际项目中,我们常常需要将3D内容与2D界面元素(如按钮、文本和背景)结合起来。这时,CSS就用于调整3D canvas的大小和位置,使其与其他HTML元素协调。此外,CSS还可以用于设置页面的整体样式,如颜色、字体和布局,以提供良好的用户体验。 "model"文件夹则包含3D模型数据。在Three.js中,3D模型通常以各种格式导入,如OBJ、FBX、GLTF等。这些模型可以是外部设计软件(如Blender、Maya或3DS Max)创建的复杂3D对象,也可以是简单的几何形状,如立方体、球体或平面。Three.js提供了加载器来解析这些文件,将它们转换为可以在WebGL上下文中渲染的对象。一旦模型加载成功,开发者可以应用动画、变换或材质来进一步定制模型的外观和行为。 在实践中,"js"文件夹通常包含Three.js库本身以及项目特定的JavaScript代码。项目代码可能包括初始化Three.js场景、设置相机、创建光源、加载模型、实现用户交互逻辑以及运行动画循环等功能。开发者需要对JavaScript有扎实的理解,以便有效地利用Three.js提供的功能。 "css"文件夹中的文件用于定义项目的样式。这可能包括定义Three.js场景容器的CSS规则,或者处理页面上的其他2D元素。通过CSS,开发者可以控制3D视口的尺寸和位置,使其适应不同设备和屏幕尺寸。 Three.js结合JavaScript和CSS,为Web开发人员提供了一个强大的工具集,使他们能够在网页上创建引人入胜的3D体验。从加载和展示3D模型,到处理用户交互和动画,Three.js简化了WebGL的复杂性,让开发者能够专注于创造创新的3D应用场景。无论是游戏、产品可视化、虚拟现实体验还是数据可视化,Three.js都是实现这些目标的理想选择。
2025-05-23 21:30:24 400.2MB javascript
1
"基于LQR算法的自动驾驶控制:动力学跟踪误差模型的C++纯代码实现与路径跟踪仿真",自动驾驶控制-基于动力学跟踪误差模型LQR算法C++纯代码实现,百度apollo横向控制所用模型。 代码注释完整,可以自己看明白,也可以付费提供代码和算法原理讲解服务。 通过C++程序实现的路径跟踪仿真,可视化绘图需要安装matplotlibcpp库,已经提前安装好包含在头文件,同时需要安装Eigen库,文件内也含有安装教程。 可以自定义路径进行跟踪,只需有路径的X Y坐标即可,替下图中框框标出来的地方路径就可以了。 图片是双移线和一些自定义的路线仿真效果。 ,自动驾驶控制; LQR算法; C++纯代码实现; 动力学跟踪误差模型; 横向控制; 路径跟踪仿真; matplotlibcpp库; Eigen库; 自定义路径跟踪; 图片仿真效果,C++实现LQR算法的自动驾驶路径跟踪控制代码
2025-05-23 18:31:47 1.11MB
1
该数据集和完整代码主要实现《神经网络 | 基于多种神经网络模型的轴承故障检测》,适用于正在学习深度学习、神经网络以及计算机、机械自动化等相关专业的伙伴们。在轴承故障诊中,研究基于已知轴承状态的振动信号样本来分析数据并建立轴承故障诊断模型预测未知状态的振动信号样本并判断该样本属于哪种状态十分重要。 资源中的神经网络模型可能仍不够完善,大家可以继续修改完善,不断研究其他的内容。感谢大家的支持和交流,你们的支持也是我前进的十足动力!
2025-05-23 14:39:33 9.2MB 神经网络 数据集
1
在当前快速发展的数字游戏产业中,Unity3D作为一款流行的游戏开发引擎,其强大的功能和灵活性使得开发者能够构建各种复杂的三维游戏和应用程序。然而,在模型场景的开发过程中,对于对象的位置、长度和角度等精确度量的需求是无法避免的。因此,开发一款能够测量场景中物体长度和角度的工具显得尤为重要。 Unity3D模型场景等测量长度和角度功能的开发,主要涉及到对Unity引擎内置API的深入理解和运用,以及对三维空间中几何计算的掌握。此类工具的开发,不仅能提高游戏开发的效率,而且可以增强游戏的互动性和沉浸感。通过精确的度量,开发者可以确保场景中的元素在视觉和功能上均达到预期效果,这对于游戏设计的精确性和玩家体验的优化至关重要。 在具体实现上,长度测量功能通常需要基于游戏对象的位置坐标进行计算。开发者可以定义起始点和终点,并通过计算这两点间直线距离来得出长度。至于角度测量,通常涉及的是两个向量之间的夹角计算,或者是三个点构成的平面角度。实现这样的测量功能,开发者可以使用向量数学和三角函数来获取精确的角度值。 Unity3D提供了多种工具和方法来支持这类功能的实现。例如,可以利用Transform组件来获取和操作游戏对象的位置、旋转等属性。同时,Unity的脚本系统允许开发者编写自定义代码来处理复杂的计算逻辑。结合这两者,开发者可以创建出一个交互式的测量工具,它允许用户在运行时选择游戏场景中的两个点,然后自动计算并显示这两点之间的距离和夹角。 例如,MeasureTool.unitypackage这个压缩包文件包含了开发这样一个测量工具所需的所有资源和脚本。开发者可以导入这个包到Unity项目中,然后在编辑器或游戏运行时使用其中的工具进行测量。具体的操作可能包括拖拽选择测量的起点和终点、查看结果的长度和角度数值、甚至是保存这些测量数据等。 除了基本的长度和角度测量,高级功能可能还包含了更复杂的几何测量,比如面积、体积计算等。为了实现这些功能,开发者可能还需要利用或开发一些额外的算法和数学模型。这些工具的出现,无疑提高了游戏开发的准确性和效率,使得最终的产品更加精致和专业。 此外,演示地址所提供的视频链接为开发者提供了直观的学习资源。通过观看视频教程,开发者可以更快地掌握如何使用这个测量工具,以及如何将其应用到具体的项目中去。这也凸显了在Unity3D开发社区中,共享资源和知识的重要性,它帮助推动整个行业的技术进步和知识普及。 Unity3D模型场景等测量长度和角度功能的demo开发,不仅需要深入理解Unity引擎的工作原理,还要求开发者具备扎实的数学和编程基础。通过这样的开发,可以极大地提升游戏开发的效率,同时确保最终产品的精确性和质量。
2025-05-23 10:08:18 13.26MB unity
1
MATLAB光伏发电系统仿真模型:基于PSO算法的静态遮光光伏MPPT仿真及初级粒子群优化应用,MATLAB环境下基于PSO算法的静态遮光光伏MPPT仿真模型:智能优化算法与基础粒子群控制的应用研究,MATLAB光伏发电系统仿真模型,智能优化算法PSO算法粒子群算法控制的静态遮光光伏MPPT仿真,较为基础的粒子群光伏MPPT,适合初始学习 ,MATLAB; 光伏发电系统仿真模型; 智能优化算法; PSO算法; 粒子群算法; 静态遮光; MPPT仿真; 基础学习。,初探MATLAB粒子群算法优化光伏MPPT仿真实验基础指南
2025-05-23 00:43:13 64KB
1
COMSOL 6.0超声相控阵无损检测仿真模型介绍:压力声学与固体力学对比模型,可自定义参数,多波形成像对比,专业模型导出功能。,COMSOL 6.0超声相控阵无损检测仿真模型介绍:压力声学与固体力学对比模型,可自定义参数,多波形对比与一键信号导出功能,COMSOL超声相控阵仿真模型 模型介绍:本链接有两个模型,分别使用压力声学与固体力学对超声相控阵无损检测进行仿真,负有模型说明。 使用者可自定义阵元数、激发频率、激发间隔等参数,可激发出聚焦、平面等波形,可以一次性导出所有波形接收信号。 为什么要做两个模型,固体力学会产生波形转,波形交乱,压力声学波速是恒定(一般为纵波),两种波形成像效果不一样,可以做对比。 comsol版本为6.0,低于6.0的版本打不开此模型 ,COMSOL超声相控阵; 压力声学模型; 固体力学模型; 阵元数自定义; 激发频率; 波形交乱; 波形成像对比; 模型说明; comsol版本6.0。,COMSOL中压力声学与固体力学在超声相控阵仿真中的双模型研究与应用
2025-05-22 18:30:24 1.61MB gulp
1
项目的核心目标是实现以下三点: 1. 提升数据分析能力:通过对大量农业数据的深度学习,模型能够识别出影响作物生长的关键因素,为农民提供科学的种植建议。 2. 优化资源配置:根据模型分析结果,系统能够指导农民合理配置水、肥料和农药等资源,减少浪费,提高资源使用效率。 3. 增强决策支持功能:通过实时监控和预测农业生产状况,模型能够帮助农民做出更明智的决策,如最佳种植时间、病虫害防治措施等。
2025-05-22 17:33:06 589KB 智能农业 数据预处理 模型部署
1
Simulink电子节气门控制模型教程与文档:发动机电子控制策略详解,Simulink电子节气门控制模型教程与文档:深入理解发动机电子节气门控制模型构建过程,simulink电子节气门控制模型发动机电子节气门控制模型,有说明文档,教程。 ,核心关键词:Simulink电子节气门控制模型; 发动机电子节气门控制模型; 说明文档; 教程。,Simulink电子节气门控制模型教程:发动机电子节气门全解析 在现代汽车技术中,电子节气门控制(ETC)系统是发动机管理系统的一个关键组成部分,它直接影响到汽车的加速性能、燃油效率和排放标准。Simulink作为一种基于图形化编程的仿真工具,广泛应用于动态系统的建模、仿真与分析,为工程师们提供了一个可视化的平台来研究和优化电子节气门控制系统。本篇文档集详细介绍了如何使用Simulink构建发动机电子节气门控制模型,并深入解析了该控制模型的工作原理及设计要点。 在探讨Simulink电子节气门控制模型之前,我们首先需要了解电子节气门控制系统的基本功能。电子节气门控制系统的任务是根据驾驶员的操作以及汽车运行的实时状态,精确控制进入发动机的空气量,从而达到优化发动机工作效率的目的。系统通常包括传感器、电子控制单元(ECU)和节气门执行器三个主要部件。传感器收集关于节气门位置、发动机转速、车速、空气流量等信息,电子控制单元根据这些信息计算出最佳的节气门开度,并通过执行器调整节气门的位置。 Simulink电子节气门控制模型的构建过程主要包括以下步骤:定义系统输入输出变量,如节气门位置传感器、发动机转速传感器信号作为输入,节气门执行器控制信号作为输出;接着,通过Simulink库中的各种模块来模拟传感器数据处理、控制策略、执行器响应等环节;通过仿真运行模型,并根据仿真结果对控制策略进行调整和优化。 在这一过程中,需要特别注意的几个方面包括:传感器和执行器的精确建模、控制策略的设计与实现、系统动态特性的分析以及控制参数的优化。例如,为了保证发动机工作在最佳状态,控制策略需要考虑到发动机不同工作模式下的空气燃料比,包括起动、加速、减速以及匀速行驶等情况。 通过深入分析和理解Simulink电子节气门控制模型,工程师不仅能够更加精确地设计和实现电子节气门控制系统,还能够在这个过程中发现和解决潜在的问题,提高系统的稳定性和可靠性。此外,Simulink模型还可以帮助工程师进行故障模拟,预测在各种异常情况下系统的响应,从而提前采取预防措施。 Simulink电子节气门控制模型的相关教程和文档通常会提供详细的建模步骤、控制策略的讲解以及仿真测试的结果分析。这些教程和文档不仅适合于经验丰富的工程师,同样也适用于那些刚开始接触汽车电子控制系统的初学者。通过这些资料的学习,初学者可以快速建立起对电子节气门控制系统基本原理和设计流程的理解,进而提高自己在汽车电子控制领域的专业技能。 总结而言,Simulink电子节气门控制模型的教程和文档为汽车工程师提供了一套完整的学习资源,从基础到高级,内容全面覆盖了理论讲解、模型构建、仿真测试与结果分析等多个方面。这对于推动电子节气门控制系统的设计创新和性能提升具有重要的实践价值和意义。
2025-05-22 15:45:17 808KB gulp
1