贝叶斯网络参数学习 课程项目-COL884(Spring'18):人工智能的不确定性 创作者:Navreet Kaur [2015TT10917] 客观的: 警报贝叶斯网络给定数据的贝叶斯参数学习,每行最多有一个缺失值。 使用的算法: 期望最大化 目标: 这项任务的目的是获得学习贝叶斯网络的经验,并了解它们在现实世界中的价值。 设想: 医学诊断。 一些医学研究人员创建了贝叶斯网络,该网络对(某些)疾病和观察到的症状之间的相互关系进行建模。 作为计算机科学家,我们的工作是根据健康记录来学习网络的参数。 不幸的是,在现实世界中,某些记录缺少值。 我们需要尽力计算网络参数,以便以后可以将其用于诊断。 问题陈述: 我们得到了由研究人员创建的贝叶斯网络(如BayesNet.png所示),注意此处对八种诊断进行了建模:血容量不足,左心衰竭,过敏React,镇痛不足,肺栓塞,插管,弯管和断线。
1
我们介绍了带变分推理的贝叶斯卷积神经网络,这是卷积神经网络(CNN)的一种变体,其中权重的难处理的后验概率分布是由Backprop的Bayes推断的。 我们证明我们提出的变分推断方法是如何实现的性能相当于频率论推理在几个数据集(MNIST,CIFAR10,CIFAR100),如所描述的相同结构。 贝叶斯vs频频方法中的过滤器权重分布 整个CNN的全贝叶斯视角 图层类型 该存储库包含两种类型的贝叶斯lauer实现: BBB(Backprop的Bayes): 基于。 该层分别对所有权重进行采样,然后将其与输入组合以从激活中计算出一个样本。 BBB_LRT(使用本地重新参数化技巧的Backprop进行Bayes操作): 这一层与本地重新参数伎俩结合贝叶斯通过Backprop。 这个技巧使得可以直接从激活中的分布中采样。 制作自定义贝叶斯网络? 要创建自定义贝叶斯网络,请继承layers.m
2021-12-01 15:13:56 46.78MB python pytorch bayesian-network image-recognition
1
Java中的贝叶斯网络工具(BNJ)是用于使用概率图形模型进行研究和开发的开源软件工具套件。 它由堪萨斯州立大学数据库知识发现实验室(KDD)出版。
2021-11-29 16:41:57 2.08MB 开源软件
1
Bayesian Network 基本概念和原理
2021-11-11 15:40:16 195KB Bayesian Network
1
贝叶斯网络算法BANJO
2021-07-13 14:06:01 3.56MB 贝叶斯
1
用python写的一段贝叶斯网络的程序 This file describes a Bayes Net Toolkit that we will refer to now as BNT. This version is 0.1. Let's consider this code an "alpha" version that contains some useful functionality, but is not complete, and is not a ready-to-use "application". The purpose of the toolkit is to facilitate creating experimental Bayes nets that analyze sequences of events. The toolkit provides code to help with the following: (a) creating Bayes nets. There are three classes of nodes defined, and to construct a Bayes net, you can write code that calls the constructors of these classes, and then you can create links among them. (b) displaying Bayes nets. There is code to create new windows and to draw Bayes nets in them. This includes drawing the nodes, the arcs, the labels, and various properties of nodes. (c) propagating a-posteriori probabilities. When one node's probability changes, the posterior probabilities of nodes downstream from it may need to change, too, depending on firing thresholds, etc. There is code in the toolkit to support that. (d) simulating events ("playing" event sequences) and having the Bayes net respond to them. This functionality is split over several files. Here are the files and the functionality that they represent. BayesNetNode.py: class definition for the basic node in a Bayes net. BayesUpdating.py: computing the a-posteriori probability of a node given the probabilities of its parents. InputNode.py: class definition for "input nodes". InputNode is a subclass of BayesNetNode. Input nodes have special features that allow them to recognize evidence items (using regular-expression pattern matching of the string descriptions of events). OutputNode.py: class definition for "output nodes". OutputBode is a subclass of BayesNetNode. An output node can have a list of actions to be performed when the node's posterior probability exceeds a threshold ReadWriteSigmaFiles.py: Functionality for loading and saving Bayes nets
1
程序是本人中毕业论文时的一个测试代码,应用Intel公司的PNL库中的示例修改的,在VS.NET2003中编译通过,希望给大家提供一个参考。 有疑问可以在我的bolg上留言 http://blog.csdn.net/guyuan1983 原因讨论
2021-04-13 21:16:35 5.18MB 贝叶斯网络 Bayesian Network 推理
1
GeNie is a software for constructing Bayesian Network. It is simple and useful.
2019-12-21 20:13:13 8.39MB GeNie;bayesian network
1