2021年CVPR去雾赛道DW-GAN论文训练代码 作者开放的源码中只提供了测试代码 训练源码包括perceptual.py、train.py、train_dataset.py、utils_test.py共4个文件 已成功跑通
2022-08-15 17:05:32 6KB 深度学习 去雾训练
1
NTIRE2021-IQA-MACS(tensorflow 2) 评估 从此处下载预:[1] (〜135 MB) 提取models.zip文件并将模型放在./models/中。 对单个图像的评估 运行 python3 evaluation_single_image.py --ref ./test_images/ref.bmp --distorted ./test_images/dist.bmp 输出为: ------------------------------------- Image Quality Score: 1381.0543870192307 对NTIRE图像的评估 在设置验证参考图像和失真图像的目录 运行 python3 evaluation_ntire.py 输出分数将记录在output.txt中。 从头开始培训网络 准备数据集 下载数据集: [1
2022-01-27 13:54:04 6.06MB challenge image-processing iqa ntire
1
用于从 RGB 图像重建光谱的分层回归网络 NTIRE 2020 团队 OrangeCat 光谱重建挑战的 README 文件:用于从 RGB 图像重建光谱的分层回归网络。 我们的方法在轨道 2 中获得了第一名:真实世界的图像。 论文可下载: : HRNet架构 主网络(不同层通过PixelShuffle和PixelUnShuffle连接): 主网建议使用的 ResDB 和 ResGB: 文件结构 NTIRE 2020 Spectral Reconstruction Challenge │ README.md │ validation*.py │ test*.py │ ensemble*.py │ └───track1 (saving the trained models of track1) │ │ code1_G_epoch9000_bs8.pth │
2021-11-30 19:28:05 53.21MB JupyterNotebook
1