CS579社交网络分析项目 如今,人们对汽车的评价不仅仅基于其价格和折旧。 拥有成本是一个关键因素。 一个最大的汽车网站 Edmunds.com 提出了 TCO 的想法,这意味着真正的拥有成本。 它会计算您在考虑下一次购买车辆时可能未计入的额外成本,包括:折旧、贷款利息、税费、保险费、燃料成本、维护和维修。 在本项目中,我们将首先通过 Edmunds API 从 Edmunds 收集评论数据。 然后尝试利用几个现有的分类和回归模型来完成机器学习过程。 最后,我们将比较我们从测试集得到的结果,并得出 TCO 价格与客户评论之间的联系的结论。 会员贡献 Jiaqi Chen : 收集数据、逻辑回归、textblob、报告 Xingtan Hu : 收集数据,伯努利/高斯朴素贝叶斯,报告 路晓阳:收集资料,PPT 此作业中包含的文件 ./Collect_data.ipynb 通过 Edmun
2023-06-18 10:01:42 8.35MB
1
请访问我们的新网站:http://socnetv.org Social Network Visualizer(SocNetV)是一种社交网络分析和可视化应用程序。 您可以绘制社交网络(图形/图)或加载现有的社交网络(GraphML,UCINET,Pajek等),计算凝聚力,中心性,社区和结构等效性指标,并基于演员中心性或声望得分应用各种布局算法(即特征向量,介于两者之间)或在动态模型上(例如,Kamada-Kawai弹簧嵌入器)
2022-07-04 16:14:28 12.55MB 开源软件
1
随着信息技术的飞速发展和信息的广泛应用,社交网络正变得越来越方便和快捷地用于信息发布和获取。 预测主题受欢迎程度对于在线推荐系统,营销服务和舆论控制非常重要。 在本文中,我们借助时间序列分析方法预测主题的受欢迎程度,验证了ARMA模型在主题受欢迎程度预测中的有效性。
2022-03-22 14:49:27 515KB Social network; ARMA model;
1
People increasingly use social networks to manage various aspects of their lives such as communication, collaboration, and information sharing. A user’s network of friends may offer a wide range of important benefits such as receiving online help and support and the ability to exploit professional opportunities. One of the most profound properties of social networks is their dynamic nature governed by people constantly joining and leaving the social networks. The circle of friends may frequently change when people establish friendship through social links or when their interest in a social relationship ends and the link is removed. This book introduces novel techniques and algorithms for social network-based recommender systems. Here, concepts such as link prediction using graph patterns, following recommendation based on user authority, strategic partner selection in collaborative systems, and network formation based on “social brokers” are presented. In this book, well-established graph models such as the notion of hubs and authorities provide the basis for authority-based recommendation and are systematically extended towards a unified Hyperlink Induced Topic Search (HITS) and personalized PageRank model. Detailed experiments using various real-world datasets and systematic evaluation of recommendation results proof the applicability of the presented concepts.
2021-12-16 10:53:12 3.25MB 推荐系统 社交网络 信任计算 链路预测
1
动态图表示学习,动态图分析论文汇总项目 本项目总结了动态图表示学习的有关论文,该项目在持续更新中,欢迎大家看/星/叉! 如果大家有值得推荐的工作,可以在问题中提出要推荐的工作,论文下载链接及其工作亮点(有优秀代码实现的工作,会优先考虑在内)。项目中表述有误的部分,也可以在issue中提出。感谢! 引流:【这也是我们的工作,欢迎手表/星/叉】 社交知识图谱专题: : 目录如下: 静态图表示与分析工作 针对静态图表示学习以及静态图分析,挖掘领域,挑选出个人认为值得继承的引用数更高,知名度较高的或最近的一些工作。 node2vec:网络的可扩展功能学习 作者:Grover A,Leskovec J.(阿姆斯特丹大学) 发表时间:2016 发表于:KDD 2016 标签:图表示学习 概述:依据表示学习,提出了一套在网络中学习连续连续类型表示的方法,取代了传统使用人工定义的例程结构化特征的方式
1
Does your startup rely on social network analysis? This concise guide provides a statistical framework to help you identify social processes hidden among the tons of data now available. Social network analysis (SNA) is a discipline that predates Facebook and Twitter by 30 years. Through expert SNA researchers, you'll learn concepts and techniques for recognizing patterns in social media, political groups, companies, cultural trends, and interpersonal networks. You'll also learn how to use Python and other open source tools—such as NetworkX, NumPy, and Matplotlib—to gather, analyze, and visualize social data. This book is the perfect marriage between social network theory and practice, and a valuable source of insight and ideas. Discover how internal social networks affect a company’s ability to perform Follow terrorists and revolutionaries through the 1998 Khobar Towers bombing, the 9/11 attacks, and the Egyptian uprising Learn how a single special-interest group can control the outcome of a national election Examine relationships between companies through investment networks and shared boards of directors Delve into the anatomy of cultural fads and trends—offline phenomena often mediated by Twitter and Facebook
2021-11-17 08:54:27 14.9MB 大数据 社会网络分析 SNA network
1
Spinger中的书籍 介绍关于社交网络
2021-10-27 01:11:56 5.23MB social network
1
在大数据时代,社交网络已成为互联网上人类交流与互动的重要体现。 识别网络中有影响力的传播者,在疾病爆发,病毒传播和舆论控制等各个领域都起着至关重要的作用。 基于这三种基本集中度测度,提出了一种应用偏好关系分析和随机游走技术的综合算法PARW-Rank,用于评估节点影响。 对于每个基本度量,分析网络中每个节点对之间的优先级关系,以构建部分优先级图(PPG)。 然后,通过结合针对三种基本度量的偏好关系来生成综合偏好图(CPG)。 最后,通过在CPG上进行随机游走来确定节点的排名。 此外,使用五个公共社交网络进行比较分析。 实验结果表明,与现有的单一中心测度方法相比,我们的PARW-Rank算法可以实现更高的精度和更好的稳定性。
2021-10-25 09:11:28 2.23MB social network influential spreaders
1
复杂网络学习分析工具pajek经典之作,值得认真学习思考.
2021-10-24 21:02:51 3.73MB Pajek 复杂网络
1
UCINET Version 6.708 | 28 June 2020 非破解版 Fixes ◾In the CLI, triadcensus was giving results only for the first matrix in a dataset ◾In the menu, Network|Whole networks|density|density by groups was printing the within group densities multiple times, with only the last one being complete
2021-08-30 11:01:29 71.17MB 社会网络 UCINET Social Network
1