面罩检测 该模型是轻量级的面罩检测模型。 基于ssd的骨干网是Mobilenet和RFB。 主要特点 Tensorflow 2.1 训练与推论 使用mAP的精度 使用tf.GradientTape急切模式训练 使用tf.keras网络功能 使用tf.data.TFRecordDataset数据集 ├── assets │ ├── 1_Handshaking_Handshaking_1_71.jpg │ ├── out_1_Handshaking_Handshaking_1_71.jpg │ ├── out_test_00002330.jpg │ └── test_00002330.jpg ├── checkpoints │ └── weights_epoch_100.h5 ├── components │ ├── config.py │ ├── __
2022-09-09 10:52:07 4.4MB detection face-detection ssd-mobilenet rfbnet
1
SSD-Mobilenet-v2.tar.gz
2022-05-23 20:32:10 59.61MB SSD
1
MobileNetV3-SSD MobileNetV3-SSD implementation in PyTorch 关于第二个版本请移步 有测试结果 希望尝试新技术请到这里 一个轻量级的目标检测包括多种模型 目的 Object Detection 应用于目标检测 环境 操作系统: Ubuntu18.04 Python: 3.6 PyTorch: 1.1.0 使用MobileNetV3-SSD实现目标检测 Support Export ONNX 代码参考(严重参考以下代码) 一 SSD部分 二 MobileNetV3 部分 4 MobileNetV1, MobileNetV2, VGG based SSD/SSD-lite implementation in Pytorch 1.0 / Pytorch 0.4. Out-of-box support for retraining on O
2021-12-05 01:13:09 153KB ssd mobilenet onnx mobilenet-ssd
1
MobileNetV3-SSD-Compact-Version MobileNetV3 SSD的简洁版本 希望尝试新技术请到这里 一个轻量级的目标检测包括多种模型 环境 Ubuntu18.04 版本 PyTorch 1.4 如果您想从头开始需要使用 mbv3_large.old.pth.tar 是backbone用来参数初始化的模型 有可能会历经坎坷 简便方式就是使用预训练模型 如果您要直接测试,模型改名为checkpoint_ssd300.pth.tar 模型下载地址 链接: 提取码:gwwv 模型测试结果 mAP 0.679 (未在COCO数据集做预训练版本) 使用步骤 一 下载VOC数据集之后,将VOCtrainval_06-Nov-2007和VOCtest_06-Nov-2007合并在一起 数据集下载 可以看这里 二 先打开create_data_lists.py文件 改成自己数
2021-11-10 20:04:21 23KB ssd mobilenet ssd-mobilenet mobilenet-ssd
1
[英语] MobileNet-SSD 比YoloV2超快的MobileNet-SSD(MobileNetSSD)+神经计算棒(NCS)+ RaspberryPi的爆炸速度。 高精度的多运动物体检测。 视频播放和对象检测是异步执行的。 为了使用多棒实现高速渲染,它是在多线程/ OpenGL中实现的。 【警告】该存储库不支持NCS2。 【日文】 【USB摄像头+多处理高性能版】 下方,使用多个摇杆时,其性能是此存储库程序的三倍以上。 我建议您参考以下存储库。 变更记录 [2018年7月19日]对应于NCSDK v2.05.00.02 / OpenCV 3.4.2 / FPS视图[2018年
2021-09-02 16:20:57 36.6MB python opencv caffe opengl
1
tensorrt_demos 展示如何使用TensorRT优化caffe / tensorflow / darknet模型并在NVIDIA Jetson或x86_64 PC平台上运行推理的示例。 在Jetson Nano上以约4.6 FPS运行优化的“ yolov4-416”物体检测器。 在Jetson Nano上以约4.9 FPS的速度运行优化的“ yolov3-416”物体检测器。 在Jetson Nano上以27〜28 FPS运行优化的“ ssd_mobilenet_v1_coco”对象检测器(“ trt_ssd_async.py”)。 在Jetson Nano上以6〜11 FPS运行非常精确的优化“ MTCNN”面部检测器。 在Jetson Nano上以“每张图像〜16毫秒(仅供参考)”运行优化的“ GoogLeNet”图像分类器。 除了Jetson Nano,所有演
2021-07-12 10:36:03 168.95MB googlenet mtcnn tensorrt ssd-mobilenet
1
SSD_MobileNet
2021-05-09 20:38:18 10KB Python
1
基于基础网络MobileNet的SSD框架 采用Android实现目标检测 采用NCNN框架加速
2021-03-31 15:00:25 55.9MB 深度学习 目标检测 ssd MobileNet
1
ssd_mobilenet_v1_coco_2017_11_17 tensorflow预训练模型
2019-12-21 19:27:55 73.02MB ssd mobilenet ssd_mobilenet_v1
1