在深度学习领域,视觉识别一直是一项重要而活跃的研究课题,其中图像分类任务又是视觉识别中最基础也是最重要的组成部分。图像分类是指对图像进行分析,然后将图像中的主体内容归类到一个或多个类别中的过程。随着技术的发展,基于卷积神经网络(CNN)的模型如AlexNet、VGG、ResNet等已经在图像分类任务上取得了巨大的成功,但模型的设计和参数调整通常比较复杂。 为了克服传统CNN模型在图像分类中的一些局限性,研究人员开始探索新的架构,比如Transformer模型。Transformer最初被设计用于处理序列数据,其在自然语言处理(NLP)领域大放异彩,特别是在机器翻译任务中取得了突破性的成果。Vision Transformer(ViT)是将Transformer架构应用于图像识别领域的一种尝试,它将图像划分为序列化的图像块(patches),从而将图像转化为序列数据,再通过Transformer编码器进行处理。ViT模型在一些图像识别任务中表现出了优越的性能,尤其是在大规模数据集上,其性能超过了许多传统的卷积网络模型。 CIFAR10数据集是图像识别和分类研究中经常使用的标准数据集之一,它包含了60000张32x32的彩色图像,这些图像分为10个类别,每个类别有6000张图像。CIFAR10数据集的规模不大不小,既不像某些大型数据集那样处理起来计算资源消耗巨大,也不像小型数据集那样缺乏代表性,因此成为了研究模型泛化能力和比较不同算法优劣的理想选择。 预训练模型是指在一个大型数据集上训练好的模型,这些模型通常已经学习到了数据中的复杂特征和模式,具有较高的泛化能力。在实际应用中,通过使用预训练模型,研究人员和工程师可以将训练好的模型应用到其他类似任务中,通过微调(fine-tuning)的方式快速适应新的任务,而不是从头开始训练模型。预训练模型的使用大大提高了模型训练的效率,降低了对计算资源的要求。 根据提供的压缩包文件信息,我们可以得知该压缩包内包含的内容是与视觉识别和图像分类相关的,特别是使用了Vision Transformer模型和CIFAR10数据集进行预训练的模型。文件名称列表中的“Vision-Transformer-ViT-master”可能是该预训练模型的源代码或训练后的模型文件,而“简介.txt”则可能包含对模型训练过程、性能评估以及如何使用模型的说明。这些文件对于研究图像分类的学者和工程师来说具有较高的参考价值。 总结而言,Vision Transformer模型在图像识别领域中展现出不同于传统卷积神经网络的潜力,通过将预训练模型应用于CIFAR10数据集,研究人员可以加速模型在具体任务中的部署和应用,同时对模型进行进一步的优化和调整,以适应特定的图像识别需求。
2025-06-10 14:39:18 157KB
1
内容概要:本文介绍了一种改进的视觉Transformer(ViT)模型,重点在于引入了三重注意力机制(TripletAttention)。TripletAttention模块结合了通道注意力、高度注意力和宽度注意力,通过自适应池化和多层感知机(MLP)来增强特征表达能力。具体实现上,首先对输入特征图进行全局平均池化和最大池化操作,然后通过MLP生成通道注意力图;同时,分别对特征图的高度和宽度维度进行压缩和恢复,生成高度和宽度注意力图。最终将三种注意力图相乘并与原特征图相加,形成增强后的特征表示。此外,文章还展示了如何将TripletAttention集成到预训练的ViT模型中,并修改分类头以适应不同数量的类别。; 适合人群:熟悉深度学习和计算机视觉领域的研究人员和技术开发者,尤其是对注意力机制和Transformer架构有一定了解的人群。; 使用场景及目标:①研究和开发基于Transformer的图像分类模型时,希望引入更强大的注意力机制来提升模型性能;②需要对现有ViT模型进行改进或扩展,特别是在特征提取和分类任务中追求更高精度的应用场景。; 阅读建议:本文涉及较为复杂的深度学习模型和注意力机制实现细节,建议读者具备一定的PyTorch编程基础和Transformer理论知识。在阅读过程中可以结合代码逐步理解各个模块的功能和相互关系,并尝试复现模型以加深理解。
2025-05-06 10:07:59 3KB Pytorch 深度学习 图像处理
1
用于Vision Transformer的预训练模型,来源于huagging face。 Google ViT-Base-Patch16-224是一个基于Vision Transformer(ViT)的深度学习模型。该模型由Google的研究人员开发,用于图像分类和其他视觉任务。 在ViT模型中,图像被分割成一系列固定大小的块(或“patches”),然后这些块被线性嵌入到一个高维空间中。这些嵌入向量随后被输入到一个标准的Transformer架构中,该架构最初是为自然语言处理任务设计的,但已被成功应用于各种视觉任务。 Google ViT-Base-Patch16-224的具体参数如下: 模型大小:Base(基础版),这意味着它使用了一个相对较小的Transformer模型。 Patch大小:16x16,这意味着图像被分割成16x16像素的块。 输入图像大小:224x224,这是模型期望的输入图像大小(在预处理阶段,图像可能会被缩放到这个大小)。
2025-05-05 19:28:06 923.44MB 人工智能
1
CUB_200_2011-ViT鸟类分类-高质量精讲
2024-06-05 11:20:15 64.67MB
用于无法访问hugging face并需要运行stable-diffusion-webui时使用
2024-03-20 19:12:00 1.26MB
1
这些文档主要介绍了深度学习模型中的一些关键组件,包括自注意力机制、前馈神经网络和Transformer模块等。它们适用于需要深入理解这些概念以构建自己的神经网络模型的读者,包括机器学习研究人员、深度学习工程师和学生等。 主要实现了基于Vision Transformer(ViT)的图像分类模型,并进行了相应的改进。首先,通过使用Rearrage层对输入的图像进行重新排列,将其转换为符合Transformer模型输入要求的格式。然后,通过定义PreNorm层、FeedForward层和Attention层等模块,构建了基于ViT的CNN模型(ViTCNN)。其中,PreNorm层用于对输入进行归一化处理,FeedForward层用于进行前向传播计算,Attention层则用于实现注意力机制。在计算过程中,通过使用sin-cos位置编码(posembsincos)方法,将图像的位置信息转化为可学习的参数,提高了模型的泛化能力。最后,通过GRU层对特征进行进一步的处理和融合,得到最终的分类结果。 该模型具有较好的精度和效率,可广泛应用于图像分类任务。但是,该模型仍存在一些可以改进的地方,例如
2024-03-11 20:23:29 3.37MB 深度学习 人工智能 图像分类
1
利用ViT模型实现图像分类,本项目具有强大的泛化能力,可以实现任何图像分类任务,只需要修改数据集和类别数目参数。这里采用的是开源的“猫狗大战”数据集,实现猫狗分类。 本项目适用于Transformer初学者,通过该实践项目可以对于ViT模型的原理和结构有清晰地认识,并且可以学会在具体项目中如何运用ViT模型。本项目代码逻辑结构清晰,通俗易懂,适用于任何基础的学习者,是入门深度学习和了解Transformer注意力机制在计算机视觉中运用的绝佳项目。
1
深度学习热力图绘制代码,例如,CNN、VIT、Swin等模型,能直接使用。CAM又叫类别激活映射图,也被称为类别热力图、显著性图等。是一张和原始图片等同大小图,该图片上每个位置的像素取值范围从0到1,一般用0到255的灰度图表示。可以理解为对预测输出的贡献分布,分数越高的地方表示原始图片对应区域对网络的响应越高、贡献越大。利用可视化的信息引导网络更好的学习,例如可以利用CAM信息通过"擦除"或""裁剪""的方式对数据进行增强;利用CAM作为原始的种子,进行弱监督语义分割或弱监督定位。
2024-03-06 09:56:14 310KB 深度学习
1
《如何训练一个ViT模型-基于timm(2)》配套代码
2023-11-14 11:25:21 37KB
1
Visual Transformer(ViT)直接应用图像patch序列的纯Transformer可以很好地执行图像分类任务,ViT获得了优异的结果,同时训练所需的计算资源大大减少。文章链接: https://blog.csdn.net/qq_39707285/category_128811927.html Visual Transformer专栏(https://blog.csdn.net/qq_39707285/category_12184436.html),此专栏详细介绍各种Visual Transformer,包括应用到分类、检测和分割的多种算法。
2023-08-09 21:50:38 4KB ViT VisualTransform Transformer
1