内容概要:本文详细介绍了一个利用MATLAB实现的遗传算法(GA)优化BP神经网络的方法,专门面向多输入多输出系统的建模和预测任务。遗传算法以其全局搜索能力解决了BP神经网络容易陷入局部最优的问题,两者结合大大提升了学习速度和精度。文中阐述了BP神经网络和遗传算法的基本原理,并介绍了两者相结合的技术细节及其在MATLAB平台上的实现方式。特别指出的是,在实现过程中遇到了一些技术和理论上的挑战,并通过合理的参数调整和结构优化逐一攻克。 适合人群:具备基本编程技能以及对人工神经网络有一定了解的研究人员、工程师和技术爱好者,特别是关注于复杂系统和大数据分析的专业人士。 使用场景及目标:主要用于需要高效建模及精确预测的复杂多维系统中,比如系统控制、金融数据分析、医学诊断、图像识别等众多行业领域内的问题解决。目的是提高系统的自动化程度,改善预测准确率,并促进更广泛的智能化管理和服务应用。 其他说明:为了帮助读者更好地理解这一过程,文档还提供了详细的模型架构图示和具体的实例编码指导,从数据准备到最终的仿真结果显示全过程。并且强调了项目所具有的创新点,比如自定义参数设定、智能优化初始权重等特性,使得该方案在实际操作中有较强的灵活性和适用性。同时指出未来可以进一步探索更多元化的优化手段和技术融合可能性。
2025-04-05 09:07:05 32KB 遗传算法 BP神经网络 MATLAB 智能优化
1
matlab如何将代码和数据打包GA-AEM源代码存储库 澳大利亚地球科学公司机载电磁学计划 作者:澳大利亚地质科学局的Ross C Brodie(ga.gov.au上的ross.c.brodie) 语言:主要是C ++,一些matlab,一些python 发行版 发行编号20160606 - Added Python 3.x interface for simple forward modelling and derivatives only. - Added Matlab interface for simple forward modelling and derivatives only. - Changed how the PPM normalisation is carried out. Now PPM normalisation is by directional-component-wise with respect to the maximum primary dB/dt or B-field at the receiver for a reference system
2025-03-28 13:47:16 13.79MB 系统开源
1
工具来自U盘厂家,支持众多Flash ID, TC58TFG8T23TA0D 983C98B37672 TC58TFG8T23TA0D 983C98B376F2 TC58TFG8T23TA0D983E99B37A72 TC58TFG9T23TA0D983E98B37672 TH58LJB8F24BA8J 98719CB376EB TH58LJG8T24TA0D 983C98B3766B TH58LJG8T24TA0D 983C98B376E3 TH58LJG8T24TA0D 983C98B3F6E3 TH58LJG8T24TA0D 983C98B3F6EB TH58LJG9T24TA0D 983E98B37663 TH58LJG9T24TA0D 983E98B3766B TH58LJG9T24TA0D 983E98B376E3 TH58LKT0T25BA8K 984898037664 TH58LKT1T25BA8C 983E98037664 TH58LKT1T25BA8C 983E9803766C TH58LKT1T25BA8C 983E980376E4 更多未列出。
2024-11-08 16:38:18 12.83MB
1
Gui-Guider-Setup-1.4.1-GAGUI Guider 是 LVGL 开发了一个上位机GUI 设计工具
2024-09-23 09:49:32 384.45MB Gui-Guider LVGL
1
安装包myeclipse-pro-2014-GA-offline-installer-windows提取方式是百度网盘分享地址
2024-08-28 16:23:38 87B myeclipse windows
1
VMware_vSphere_5.0_GA全集带注册机.
2024-08-23 19:13:12 82KB VMware VSphere5.0
1
ubuntu上的 Gui-Guider-Setup-1.7.2-GA.deb,可以直接安装使用
2024-08-22 22:22:25 154.94MB ubuntu
1
基于遗传算法(GA)优化长短期记忆网络(GA-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-07-27 16:14:12 28KB 网络 网络 matlab lstm
1
为了克服使用单一智能优化算法在求解复杂问题中表现出的精度不高、易陷入局部最值、不能在全局搜索等一系列不足,算法融合的思想开始被研究和应用。将GA与PSO、GWO这三种经典算法进行融合,并辅以改进,从而利用它们的互补性,取长补短,提高求解复杂问题的能力。 无免费午餐定理,对任何优化问题,任两种优化算法的平均性能是相等的,没有任何一种优化算法在计算效率、通用性、全局搜索能力等性能方面都能表现得很好。 算法的混合也就成了算法优化领域的一个研究热点和趋势,混合有着固有的内在需求,不是简单地将算法组合叠加,要按照一定的策略和模式进行。 GA算法过程简单,全局收敛性好,多用于进行函数优化、数据挖掘、生产调度、组合优化、图像处理、机器学习等问题。但个体没有记忆,遗传操作盲目无方向,所需要的收敛时间长; PSO算法原理简单,用速度、位移公式迭代易于实现,具有记忆功能,需要调节的参数少,在寻优稳定性和全局性收敛性方面具有很大优势,但容易陷入局部最优值出现早熟,种群多样性差,搜索范围小,在高维复杂问题寻优时更为明显,多用于求解组合优化、模式分解、传感器网络、生物分子研究等领域。 联合GWO算法
2024-06-26 14:27:38 1.13MB
1
通过GA优化算法优化模糊隶属函数实现最优的模糊控制效果_源码
2024-06-20 18:28:55 193KB