自然语言处理是计算机科学和人工智能领域的研究热点,它涉及让计算机能够理解、解释和生成人类语言的各种技术。在自然语言处理的众多任务中,机器翻译是一个具有代表性的应用,它允许不同语言的人们能够跨越语言障碍进行交流。近年来,基于Transformer架构的模型在机器翻译领域取得了革命性的进步。Transformer模型由于其并行化能力强、训练效率高、处理长距离依赖的优越性,已经成为当前机器翻译的主流技术。 本案例的核心是一个Transformer模型的实际应用,展示了如何使用该模型进行翻译任务。通过具体文件的名称,我们可以推测出案例中包含的内容和结构。首先是“transformer_mytest.ipynb”,这应该是一个Jupyter Notebook文件,通常用于编写和执行可重复的数据处理和分析任务。在这个文件中,用户可能会看到Transformer模型的实例化、训练、评估以及翻译过程的演示代码。 “model.py”文件很可能是包含Transformer模型结构定义的Python脚本。在这个文件中,我们可能会找到构成Transformer模型的各个组件,如编码器层、解码器层、多头自注意力机制、位置编码等。此外,还包括模型的前向传播逻辑,以及在给定输入序列时输出翻译结果的方法。 “tokenizer.py”文件应该是负责处理和转换文本数据的部分,它包含了将原始文本分词、编码为模型可以处理的数字序列的代码。分词器是自然语言处理中不可或缺的一环,它直接影响到模型性能的好坏。分词器会读取词汇表,将单词或字符映射到相应的索引,并为模型提供必要的语言学信息。 “utils.py”文件通常包含了辅助功能的实现。在Transformer翻译任务中,这些功能可能包括但不限于数据预处理、后处理、训练辅助函数、性能评估指标等。这些工具函数是为了简化主程序的编写,提高代码的可重用性和可读性。 “main.py”是程序的入口点,它将所有的组件整合到一起,并协调整个翻译任务的执行。在这个文件中,我们可能会看到数据加载、模型训练、翻译测试以及结果输出的主逻辑。 “dataloader.py”文件则负责数据的加载和批处理。在机器学习和深度学习任务中,数据加载器负责将数据分为批次,以便模型进行批量学习。它能够高效地从数据集中读取数据,并将其转换为模型所需的格式。 “data.txt”文件可能包含了用于训练和测试模型的原始数据。在翻译任务中,数据集通常由一系列成对的句子组成,包含源语言文本和目标语言文本。数据质量直接影响模型训练效果,因此需要经过仔细的清洗和预处理。 整个案例的实现依赖于深度学习框架,如TensorFlow或PyTorch,这些框架提供了构建神经网络所需的工具和接口。通过实际操作这些文件,用户可以了解如何搭建一个基于Transformer的翻译模型,包括模型的训练、验证、测试以及后续的优化和调参。 这个案例向我们展示了一个完整的Transformer翻译任务的实现过程,从模型的定义、数据的处理,到最终的训练和评估。通过这些文件的结构和功能,我们可以了解到机器翻译任务的复杂性和深度学习在其中所发挥的关键作用。
2025-06-13 16:23:05 768KB
1
### 南邮自然语言处理实验三知识点解析 #### 一、实验概述 南京邮电大学的这份实验报告针对的是自然语言处理(NLP)领域的三项基本任务:词性标注(Part-of-Speech Tagging, POS)、命名实体识别(Named Entity Recognition, NER)以及信息抽取(Information Extraction)。这些技术在文本挖掘、机器翻译、问答系统等领域有着广泛的应用。 #### 二、实验目的 1. **词性标注**:掌握如何对文本中的词语进行词性标注。 2. **命名实体识别**:学会识别文本中的特定实体,如人名、地名等。 3. **信息抽取**:理解如何从非结构化或半结构化的文本中提取结构化信息。 #### 三、实验环境 - **硬件**: 微型计算机 - **软件**: Windows操作系统、Python3.7或3.8 #### 四、实验原理与内容 本节将详细介绍实验中涉及到的主要知识点。 ##### 1. 词性标注 词性标注是自然语言处理中的基础任务之一,其目标是对句子中的每个词赋予一个表示其语法功能的标记。 - **基于隐马模型的词性标注** - **隐马尔可夫模型**(Hidden Markov Model, HMM)是一种统计模型,常用于序列标注问题,如语音识别、手写识别、生物信息学中的序列分析等。 - 在词性标注中,HMM假设当前词的词性仅依赖于前一个词的词性,这被称为一阶HMM;而二阶HMM则考虑前两个词的词性。 - **代码示例**: ```python from pyhanlp import * from test07 import ensure_data HMMPOSTagger = JClass('com.hankcs.hanlp.model.hmm.HMMPOSTagger') AbstractLexicalAnalyzer = JClass('com.hankcs.hanlp.tokenizer.lexical.AbstractLexicalAnalyzer') PerceptronSegmenter = JClass('com.hankcs.hanlp.model.perceptron.PerceptronSegmenter') FirstOrderHiddenMarkovModel = JClass('com.hankcs.hanlp.model.hmm.FirstOrderHiddenMarkovModel') SecondOrderHiddenMarkovModel = JClass('com.hankcs.hanlp.model.hmm.SecondOrderHiddenMarkovModel') def train_hmm_pos(corpus, model): tagger = HMMPOSTagger(model) # 创建词性标注器 tagger.train(corpus) # 训练 analyzer = AbstractLexicalAnalyzer(PerceptronSegmenter(), tagger) # 构造词法分析器 text = "新华社北京 5 月 29 日电(记者严赋憬、杨淑君)记者从国家林草局获悉,在有关部门和京沪两地各方的高度重视和共同努力下,大熊猫“丫丫”顺利通过隔离检疫,乘坐包机平安抵达北京,于 5 月 29 日 0 时 43 分回到北京动物园大熊猫馆。目前,“丫丫”健康状况稳定。" print(analyzer.analyze(text)) # 分词+词性标注 return tagger ``` **结果**:新华/nt 社/v 北京/v 5 月/v 29 日/v 电/v (/v 记者/v 严赋憬/v 、/v 杨淑君/v )/v 记者/v 从/v 国家/v 林草局/v 获悉/v ,/v 在/v 有关/v 部门/v 和/v 京/v 沪/v 两地/v 各方/v 的/v 高度重视/ - **分析解读**: - `nt` 表示地名; - `v` 表示动词; - 其他标记根据上下文可以推断出来。 ##### 2. 命名实体识别 命名实体识别旨在从文本中识别出具有特定意义的实体,如人名、地名、组织机构名等,并将其分类。 - **命名实体的类别**: - 人名(Person) - 地名(Location) - 组织机构名(Organization) - **技术实现**: - 使用训练好的模型对文本进行识别。 - **应用场景**: - 新闻报道分析 - 社交媒体监控 - 情感分析 ##### 3. 信息抽取 信息抽取是从文本中自动抽取结构化信息的过程,它可以帮助我们快速了解文本的关键信息。 - **信息抽取的步骤**: 1. 文本预处理:分词、词性标注、命名实体识别等。 2. 特征提取:基于规则的方法、基于机器学习的方法等。 3. 关系抽取:识别实体之间的关系。 - **应用场景**: - 数据库填充 - 自动问答系统 - 事件检测 #### 五、总结 本次实验通过实际操作加深了学生对词性标注、命名实体识别以及信息抽取这三个NLP领域关键技术的理解。通过使用Python编程语言和相关的NLP工具库,学生不仅掌握了理论知识,还提高了实践能力。这些技能对于从事自然语言处理研究和开发的人员来说至关重要。
2025-06-05 15:02:10 230KB 自然语言处理
1
内容概要:本文详述了使用 DeepSeek R1 Distill 实现大模型微调入门的实际操作。主要内容涵盖如何利用 unsloth 工具快速加载和设置 DeepSeek R1 模型(包括 LLaMA 和 Qwen),并对模型进行了医学问题回答的实验,指出了初步效果欠佳的现象。接着,采用一种最小可行性实验方法对模型进行小规模微调以改善问答质量,具体展示了从数据集准备、模型设置、训练启动到初步验证的全过程。最后扩展到了全量数据的大规模微调,提升了医学专业问答的效果,实现了更为精确的答案输出。 适合人群:从事深度学习研究和技术人员,特别是对大规模语言模型及其医学应用场景感兴趣的科研人员及工程师。 使用场景及目标:本教程适合希望通过快速入门和动手实践深入了解大模型在医学领域的问答系统建设的专业人士。通过此项目的学习,读者可以掌握如何有效地使用 unsloth 对现有大模型进行特定领域内的精细调整,并优化其性能。 其他说明:为了更好地理解和复现实验过程,文中不仅提供了必要的代码片段,还给出了详细的配置细节。此外,在实验过程中涉及的关键参数选择也有较为深入的介绍。
2025-05-31 15:34:26 1.66MB 深度学习 自然语言处理
1
涉及分类模型:朴素贝叶斯/支持向量机/随机森林/KNN 结合文章《L4 垃圾邮件数据集分类延申 - NB/KNN/SVC/随机森林》使用更佳
2025-05-29 01:09:33 893KB 数据分析 机器学习 自然语言处理
1
来源:复旦大学计算机信息与技术系国际数据库中心自然语言处理小组;由复旦大学李荣陆提供;test_corpus.rar为测试语料,train_corpus.rar为训练语料,传的时候没注意(传错了也不知道咋删),完整版我重新另外上传了
2025-05-27 11:11:39 94.28MB 中文语料 复旦语料 train_corpus test_corpus
1
信用卡异常检测在金融安全领域占据重要地位,它旨在通过分析和监测信用卡交易行为,发现并阻止欺诈行为。一种有效的方法是构建和利用专门的数据集,这样的数据集包含了大量的正常交易数据以及一些典型的欺诈交易数据,通过这些数据训练算法模型,使其能够区分正常交易和异常交易。在这一过程中,随机化主成分分析(PCA)作为一种降维技术,可用于减少数据集中的特征数量,去除噪声,并且提取出最重要的特征,从而提高异常检测的效率和准确性。 随机化PCA在处理高维数据时,尤其在金融事务中,能够有效地保留数据集的主要结构,同时去除冗余信息和噪声,这对于维护信用卡交易数据的隐私性和安全性也有一定帮助。信用卡交易通常具有海量的特征,包括交易金额、时间、地点、商户类别、用户历史行为等,随机化PCA能够将这些高维数据压缩到一个低维空间,而低维空间中仍然保留了数据最重要的变化趋势和信息。 异常检测系统的构建涉及到机器学习领域内的监督学习和无监督学习。在无监督学习中,系统可以使用诸如K-means聚类、DBSCAN等算法来识别数据中的异常模式。而在监督学习方法中,系统需要通过已标记的训练数据来学习正常和异常之间的区别。无论是哪一种方法,都离不开高质量的数据集作为基础。数据集的构建需要遵循一定的标准和规则,以确保模型的泛化能力和准确性。 在数据集的构建过程中,自然语言处理(NLP)技术也可以被用来处理交易记录中的文本信息,例如用户对于交易的备注信息或者商户的描述。通过文本分析技术,可以进一步提取有用信息,增强异常检测模型的性能。例如,通过情感分析可以了解到交易描述的情感倾向,进而辅助判断该交易是否具有欺诈风险。 构建信用卡异常检测数据集时,需要确保数据的代表性和多样性,这包括但不限于不同国家和地区的交易数据、不同类型的信用卡交易以及多样的欺诈手段。此外,为了保护个人隐私,数据集中的个人信息需要进行脱敏处理,确保在分析和模型训练过程中不会泄露用户隐私。 数据集在经过充分的预处理和特征提取后,可以用于训练各种机器学习模型,如支持向量机(SVM)、神经网络、决策树等,其中PCA可以在预处理阶段作为特征提取的一种手段。使用PCA处理后的数据可以提高模型训练的效率,同时降低过拟合的风险。另外,模型的评估和验证也非常重要,通过交叉验证、A/B测试等方法,可以有效评估模型的性能,确保其在现实环境中的有效性和稳健性。 高质量的数据集是信用卡异常检测模型构建的核心。通过包括随机化PCA在内的各种机器学习技术和自然语言处理技术,可以大幅提高信用卡欺诈检测的准确率和效率,从而为金融安全提供更加有力的技术支撑。
2025-05-23 22:05:08 8.44MB 人工智能 机器学习 自然语言处理
1
### 南京邮电大学自然语言处理实验二:分词技术深入探究 #### 实验概述 本次实验的主要目的是深入理解并实现三种不同的分词方法:隐马尔科夫模型(HMM)、感知机模型和条件随机场(CRF)。通过这些方法的应用与实践,旨在加深学生对自然语言处理(NLP)领域中的文本分词技术的理解。 #### 实验目的与要求 - **掌握隐马尔科夫模型分词**:了解HMM的基本原理及其在中文分词中的应用。 - **掌握感知机模型分词**:学习感知机模型的基本理论,并实现其在中文分词中的应用。 - **掌握条件随机场分词**:熟悉CRF的理论基础,以及如何利用CRF进行中文分词。 #### 实验环境 - **硬件**:微型计算机 - **软件**: - 操作系统:Windows - Python版本:3.7 或 3.8 #### 实验原理及内容详解 ##### 1. 隐马尔科夫模型分词 隐马尔科夫模型(HMM)是一种统计模型,常用于处理序列标注问题,在自然语言处理领域有着广泛的应用。HMM的基本思想是将序列中的每个元素视为一个观测值,而隐藏状态则表示元素的真实类别。对于中文分词任务,可以将汉字视为观测值,将词语边界作为隐藏状态。 **实验步骤**: 1. **加载数据**:使用Python的`pyhanlp`库来加载MSR数据集。 2. **模型训练**:根据训练数据集构建HMM模型。 3. **分词测试**:利用训练好的模型对测试数据集进行分词处理,并计算F1分数以评估模型性能。 **代码示例**: ```python from pyhanlp import * # 导入必要的类 import zipfile import os from pyhanlp.static import download, remove_file, HANLP_DATA_PATH # 定义HMM相关类 FirstOrderHiddenMarkovModel = JClass('com.hankcs.hanlp.model.hmm.FirstOrderHiddenMarkovModel') SecondOrderHiddenMarkovModel = JClass('com.hankcs.hanlp.model.hmm.SecondOrderHiddenMarkovModel') HMMSegmenter = JClass('com.hankcs.hanlp.model.hmm.HMMSegmenter') CWSEvaluator = SafeJClass('com.hankcs.hanlp.seg.common.CWSEvaluator') # 定义训练函数 def train(corpus, model): segmenter = HMMSegmenter(model) segmenter.train(corpus) return segmenter.toSegment() # 定义评估函数 def evaluate(segment): result = CWSEvaluator.evaluate(segment, msr_test, msr_output, msr_gold, msr_dict) print(result) # 定义获取测试数据路径的函数 def test_data_path(): data_path = os.path.join(HANLP_DATA_PATH, 'test') if not os.path.isdir(data_path): os.mkdir(data_path) return data_path # 定义确保数据存在的函数 def ensure_data(data_name, data_url): root_path = test_data_path() dest_path = os.path.join(root_path, data_name) if os.path.exists(dest_path): return dest_path if data_url.endswith('.zip'): dest_path += '.zip' download(data_url, dest_path) if data_url.endswith('.zip'): with zipfile.ZipFile(dest_path, "r") as archive: archive.extractall(root_path) remove_file(dest_path) dest_path = dest_path[:-len('.zip')] return dest_path # 主程序 if __name__ == '__main__': sighan05 = ensure_data('icwb2-data', 'http://sighan.cs.uchicago.edu/bakeoff2005/data/icwb2-data.zip') ``` ##### 2. 感知机模型分词 感知机模型是一种线性分类器,它可以用来解决二分类问题。在中文分词任务中,可以将每个汉字视为特征向量的一部分,通过对特征向量进行分类来判断该位置是否为词的边界。 **实验步骤**: 1. **特征提取**:定义特征提取函数,如前后汉字、偏旁部首等。 2. **模型训练**:使用感知机算法对特征进行训练。 3. **分词预测**:基于训练好的感知机模型对测试数据进行分词预测。 ##### 3. 条件随机场分词 条件随机场(CRF)是一种概率模型,用于标注或解析序列数据。在中文分词中,CRF可以通过学习上下文之间的依赖关系来提高分词准确性。 **实验步骤**: 1. **特征设计**:设计特征函数,包括局部特征和全局特征。 2. **模型训练**:使用训练数据集训练CRF模型。 3. **分词测试**:利用训练好的模型对测试数据进行分词。 #### 总结 通过本次实验,学生能够深入了解不同分词方法的原理及其在实际应用中的表现。隐马尔科夫模型、感知机模型和条件随机场都是当前自然语言处理领域中重要的分词技术,掌握这些技术对于从事相关研究和开发工作具有重要意义。此外,通过亲手编写代码并分析结果,学生还可以提升编程能力和数据分析能力。
2025-05-09 08:26:38 231KB 自然语言处理
1
该文件为BERT标题分类相关资源,包含文本分类数据集、本地读取所需要的预训练模型以及BERT标题分类源代码。 目录结构如下: BERT标题分类相关资源 │ academy_titles.txt │ job_titles.txt │ 使用Transformers的BERT模型做帖子标题分类.ipynb └─bert-base-chinese config.json pytorch_model.bin tokenizer.json tokenizer_config.json vocab.txt
2025-05-05 18:34:08 364.28MB bert 数据集 文本分类 自然语言处理
1
在医疗领域,一些应用已经从科幻小说变为现实。人工智能系统通过了中国和英国的医学执照考试 ,而且它们比普通医生考得更好。最新的系统比初级医生能更好地诊断出55种儿科疾病。但是,这些系统比第一批计算机视觉深度学习应用(例如研究一个图像)中的一些更难构建,因为它们需要具有更广泛常见的医学知识,要处理更多种类的输入,并且必须理解上下文。 数据说明: 来自某在线求医产品的中文医患对话数据。 原始描述:The MedDialog dataset contains conversations (in Chinese) between doctors and patients. It has 1.1 million dialogues and 4 million utterances. The data is continuously growing and more dialogues will be added. The raw dialogues are from haodf.com. All copyrights of the data belong to haodf.com.
1
在当今的信息时代,金融市场与自然语言处理技术的结合日益紧密,尤其是在情感分析领域。情感分析指的是利用计算方法识别和提取文本数据中的主观信息,以判断文本的情感倾向。在金融领域,情感分析能够帮助投资者和金融分析师从大量的金融新闻、报告、社交媒体信息中捕捉到市场情绪的微妙变化,从而做出更为精准的预测和决策。 情感词典作为情感分析的核心,收录了大量词汇并标记了各自的情感倾向,如正面、负面或中性。中文金融情感词典在此基础上,针对金融领域进行专门化定制。它不仅包含了通用情感词典中的情感词汇,还特别扩充了与金融市场紧密相关的专业术语、俚语、缩写等表达,并对这些词汇进行了情感倾向的标注。 构建一个全面而准确的中文金融情感词典是一项复杂的工作。需要搜集金融领域的语料库,这包括了从历史金融新闻、公告、财报、市场评论等不同来源的文字资料。然后,使用自然语言处理技术对这些语料进行分析处理,利用词频统计、词性标注、依存句法分析等方法,以确保词典中词汇的情感分类的科学性和准确性。 中文金融情感词典的一个重要应用是在舆情监测和风险管理中。通过对金融市场相关文本内容的快速分析,投资者和决策者能够及时了解市场情绪的变化,从而在投资决策中加入情感因素的考量。同时,它还可以用于量化投资策略的优化,如股票市场的情绪分析,帮助投资者判断股票的买卖时机。 然而,构建和应用情感词典也面临一些挑战。例如,中文金融领域词汇更新换代较快,新的金融术语、概念层出不穷,这要求情感词典必须持续更新和扩充。另外,由于金融信息中存在大量隐晦、双关的语言现象,使得情感分析的准确性受到了一定影响。因此,除了建立广泛词汇覆盖的情感词典外,还需研究深度学习、语境分析等先进技术,以提高情感分析模型的智能水平和准确度。 尽管存在挑战,中文金融情感词典作为金融领域中一个重要的研究工具,已经越来越受到业界的重视。随着自然语言处理技术的不断进步,未来的情感分析工具将更加智能化、高效化,为金融市场的分析和预测提供更加有力的支持。
2025-04-17 19:06:08 149KB 自然语言处理 情感分析
1