电力系统潮流计算程序详解:牛拉法、PQ分解法及高斯赛德尔法的对比分析与应用指南,电力系统潮流计算程序详解:牛拉法、PQ分解法、高斯赛德尔法的应用与对比分析,电力系统潮流计算程序,牛拉法潮流计算程序,PQ分解法潮流计算程序,高斯赛德尔法潮流计算程序。 潮流计算对比分析,牛拉法PQ分解法对比分析。 程序说明,潮流分析报告。 程序可编写是适应于任意节点网络 ,电力系统潮流计算程序; 牛拉法、PQ分解法、高斯赛德尔法; 对比分析; 程序说明; 潮流分析报告; 任意节点网络。,电力系统潮流计算方法对比分析:牛拉法、PQ分解法与高斯赛德尔法详述及应用报告
2025-04-09 22:12:22 2.26MB gulp
1
人工势场法换道避撞与MPC模型预测控制联合仿真研究:轨迹规划与跟踪误差分析,人工势场法道主动避撞加mpc模型预测控制,carsim和simulink联合仿真,有规划和控制轨迹对比图。 跟踪误差良好,可以作为学习人工势场方法在自动驾驶汽车轨迹规划上的应用资料。 ,核心关键词:人工势场法; 换道; 主动避撞; MPC模型预测控制; Carsim和Simulink联合仿真; 规划; 控制轨迹对比图; 跟踪误差。,"人工势场法与MPC模型预测控制联合仿真:自动驾驶汽车换道避撞策略研究" 在自动驾驶汽车技术的开发中,轨迹规划与控制是确保车辆安全、平稳运行的核心技术之一。人工势场法作为一种启发式方法,在轨迹规划上有着广泛的应用。通过模拟物理世界中的力场效应,人工势场法能够在复杂的驾驶环境中为自动驾驶车辆提供一条避开障碍物、实现平滑换道和避撞的路径。这种方法通过对势场的计算,指导车辆避开高势能区域,从而找到一条低势能的最优路径。 MPC(Model Predictive Control,模型预测控制)是一种先进的控制策略,它通过建立车辆的动态模型并预测未来一段时间内的车辆状态,从而实现对未来控制动作的优化。在自动驾驶领域,MPC能够结合车辆当前状态、未来期望状态以及约束条件(如速度、加速度限制等),实时地计算出最优的控制输入序列,以达到预定的行驶目标。 当人工势场法与MPC模型预测控制相结合时,不仅可以实现复杂的轨迹规划,还可以通过MPC的预测能力提升轨迹的跟踪性能。这种联合仿真研究,利用Carsim软件进行车辆动力学模型的建模和仿真,再通过Simulink进行控制策略的实现和验证,能够有效地分析轨迹规划与控制的性能,尤其是跟踪误差。 在本次研究中,通过Carsim和Simulink的联合仿真,可以清晰地展示出规划轨迹与控制轨迹之间的对比。这种对比有助于直观地评估控制策略的优劣,并为自动驾驶汽车的进一步开发提供指导。研究中提到的跟踪误差良好,说明了联合使用人工势场法和MPC模型预测控制能够有效地降低误差,提高轨迹跟踪的精确度。 本研究不仅在技术上取得了进展,同时也为学习和理解人工势场方法在自动驾驶汽车轨迹规划上的应用提供了宝贵的资料。通过对人工势场法的理解和掌握,工程师和研究人员可以更好地设计出符合实际需求的自动驾驶系统。而MPC模型预测控制的引入,则进一步提升了系统的智能化水平,使得自动驾驶汽车能够在更复杂的交通环境中安全、高效地行驶。 人工势场法与MPC模型预测控制的联合应用,为自动驾驶汽车的轨迹规划与控制提供了一种新的思路和技术路线。这种结合不仅优化了路径选择,还提高了控制精度,为自动驾驶汽车的商业化落地奠定了坚实的技术基础。
2025-04-09 20:03:48 101KB paas
1
基于FPGA的图像中值滤波算法实现与效果对比——以Verilog编程和Lenna图像为例,基于FPGA的Verilog中值滤波算法实现与MATLAB验证报告——以Lenna图像为例,效果对比展示,基于FPGA的图像中值滤波算法实现。 在vivado上用verilog实现。 仿真模型用lenna典型图像,500×500分辨率。 包含matlab验证程序。 图三显示了FPGA实现的滤波效果和matlab滤波效果的对比。 ,基于FPGA的图像中值滤波算法实现; Verilog实现; Lenna典型图像; 500x500分辨率; Matlab验证程序; 滤波效果对比。,基于FPGA的Verilog中值滤波算法实现:Lenna图像500x500分辨率对比验证
2025-04-08 19:56:13 898KB csrf
1
Algoltek AG7111和AG7110都是高性价比HDMI3切1显示转换方案,两者在设计电路上有共同点,也有一些差异,概述两者的共同点:都支持HDMI 1.4规范, 支持HDMI、DVI和显示端口输入 兼容DisplayPort双模标准版本1.1 过渡调制差分信号吞吐量高达3.4Gbps/车道(总计10.2 Gbps) 像素时钟频率高达340MHz 支持30Hz时4K2K分辨率 支持深颜色 嵌入RC以排除外部晶体 嵌入5V至3.3V/1.2V调节器 在每个高速信号输入端集成50欧姆终端电阻 支持端口启用LED指示灯的3个GPO 支持GPI在自动或MCU模式之间进行选择(参见AG7110应用说明) 自动HDMI插件检测 内置端口激活电路,用于在没有外部MCU的源设备之间切换 支持远程控制器应用的外部MCU接口 为节能而实施的暂停模式 不同长度的电缆 实施信号延伸设计,以支持长电缆 AG7111设计电路如下图: AG7111/AG7110共同应用范围: 投影仪 A/V接收器 机顶盒 游戏机 电视/监视器 媒体中心 个人电脑/笔记本电脑 AG7111/AG7110两者的差异分析: AG7110建议设计HDMI3切1显示转换方案,而AG7111原厂建议来设计做5切1HDMI显示转换方案。
1
基于灰狼优化算法的机器人三维路径规划:mp-GWO与CS-GWO算法对比及详细代码注释,三维路径规划:基于灰狼改进算法的MP-GWO与CS-GWO机器人路径规划算法对比,内含详细代码注释,三维路径规划 基于灰狼改进算法的机器人路径规划mp-GWO和CS-GWO机器人路径规划算法 自由切GWO,CS-GWO算法进行对比。 内涵详细的代码注释 ,三维路径规划; 灰狼改进算法; 机器人路径规划算法; mp-GWO; CS-GWO; 算法对比; 代码注释,基于灰狼优化算法的三维机器人路径规划研究:mp-GWO与CS-GWO算法的对比与代码详解
2025-04-08 16:24:47 1.09MB 数据结构
1
该资源包含基于U-Net模型的医学图像分割任务完整代码及不同注意力机制(如SENet、Spatial Attention、CBAM)下的训练结果。资源实现了数据预处理、模型定义、训练与验证循环,以及结果评估与可视化,提供了详细的实验记录与性能对比(如Accuracy、Dice系数、IoU等关键指标)。代码结构清晰,易于复现和扩展,适用于医学图像分割研究和U-Net模型改进的开发者与研究者参考。 在人工智能领域,图像分割技术一直是一个备受关注的研究方向,特别是在医学图像分析中,精确的图像分割对于疾病的诊断和治疗具有重要的意义。ISIC(International Skin Imaging Collaboration)项目提供了大量的皮肤病医学图像,这对于研究和开发图像分割模型提供了宝贵的资源。UNet作为卷积神经网络(CNN)的一种变体,在医学图像分割领域表现出了优异的性能,尤其是它的结构特别适合小样本学习,并且能够捕捉图像的上下文信息。 本研究利用UNet模型对ISIC提供的皮肤病医学图像进行了分割,并在此基础上加入了注意力机制,包括SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等,以进一步提升模型性能。注意力机制在深度学习中的作用是模拟人类视觉注意力,通过赋予网络模型关注图像中重要特征的能力,从而提高任务的准确性。SENet通过调整各个特征通道的重要性来增强网络的表现力,而CBAM则更加细致地关注到特征的二维空间分布,为网络提供了更加丰富和准确的注意力。 研究结果表明,在引入了这些注意力机制后,模型的分割准确率达到了96%,这显著高于没有使用注意力机制的原始UNet模型。这样的成果对于医学图像的精确分割具有重要的意义,能够帮助医生更准确地识别和分析病灶区域,从而为疾病的诊断和治疗提供科学依据。 本资源提供了一套完整的医学图像分割任务代码,涵盖了数据预处理、模型定义、训练与验证循环、结果评估和可视化等关键步骤。代码结构设计清晰,方便开发者复现和对模型进行扩展,不仅对医学图像分割的研究人员有帮助,同时也对那些想要深入学习图像分割的AI爱好者和学生有着极大的教育价值。 通过对比不同注意力机制下的训练结果,研究者可以更深入地理解各种注意力机制对模型性能的具体影响。实验记录详细记录了各个模型的关键性能指标,如准确率(Accuracy)、Dice系数、交并比(IoU)等,这些都是评估分割模型性能的常用指标。通过这些指标,研究者不仅能够评估模型对图像分割任务的整体性能,还能够从不同维度了解模型在各个方面的表现,从而为进一步的模型优化提供指导。 这份资源对于那些希望通过实践来学习和深入理解医学图像分割以及U-Net模型改进的研究人员和开发人员来说,是一份宝贵的资料。它不仅包含了实现高精度医学图像分割模型的代码,还提供了如何通过引入先进的注意力机制来提升模型性能的实践经验。
2025-04-06 19:24:08 440.34MB UNet 注意力机制
1
基于LQR算法的独立四轮驱动横摆角速度控制模型与资料解析,入门必备,对比MPC和SMC算法的首选模板,基于LQR算法的横摆角速度控制技术研究:四轮独立驱动与动力学模型分析,稳定性因素考虑,与其他算法对比说明,四轮独立驱动横摆角速度控制,LQR 基于LQR算法的 基于二自由度动力学方程,通过主动转向afs和直接横摆力矩dyc实现的横摆角速度跟踪 ,模型包括期望横摆角速度,质心侧偏角,稳定性因素,lqr模块等模块,作为lqr入门强烈推荐。 还有详细的lqr资料说明,可以作为基本模板,和其他算法(mpc smc)做对比等 ,四轮独立驱动;横摆角速度控制;LQR算法;二自由度动力学方程;主动转向afs;直接横摆力矩dyc;横摆角速度跟踪;lqr模块;稳定性因素;算法对比。,基于LQR算法的车辆横摆角速度控制系统设计与研究
2025-04-06 16:41:06 1.71MB edge
1
改进麻雀搜索算法在FMD分解中的应用与优化——ISSA-fmd算法的研究与对比分析,改进麻雀搜索算法优化fmd分解(ISSA–fmd),改进麻雀搜索算法(ImprovedSparrow Search Algorithm,ISSA)是由Song W等人基于麻雀搜索算法提出一种改进麻雀搜索算法。 该算法通过三个改进策略,提高算法的收敛精度和避免陷入局部最优。 提供参考文献以及算法对比图。 改进策略: 1.基于混沌映射初始化种群策略 2.基于非线性递减权重更新发现者策略 3.改进加入者位置更新策略 ,ISSA; fmd分解; 混沌映射初始化种群策略; 非线性递减权重更新发现者策略; 改进加入者位置更新策略,改进ISSA算法优化FMD分解的探索与对比
2025-04-06 14:41:53 1.29MB
1
标题中的“Excel对比工具”是一款专门用于比较Excel表格数据差异的软件,它的主要功能是帮助用户批量对比多个Excel文件,并以鲜明的颜色标记出差异部分,提高工作效率。此工具的特性包括: 1. **批量对比Excel**:用户可以一次性上传或指定多个Excel文件,工具会自动进行比较,无需手动一对一对比,大大节省了时间。 2. **结果显示**:对比结果直接以Excel格式展示,方便用户查看和理解。不同颜色的标记使得差异一目了然,用户可以快速定位到有变化的数据,这对于数据处理和分析工作尤其重要。 3. **多进程对比**:该工具采用了多进程技术,这意味着它能够充分利用计算机的多核处理器资源,同时进行多个Excel文件的对比,显著提高了对比速度,对于大量数据的处理具有更高的效率。 4. **Python+PyQt5编写**:工具的开发语言是Python,这是一种广泛使用的编程语言,具有丰富的库支持和良好的可读性。PyQt5是一个Python的图形用户界面工具包,用它构建的界面友好,功能强大,为用户提供了一种直观的方式来与工具交互。 5. **CMD启动**:除了常规的图形界面方式,该工具还支持通过命令行(CMD)启动,这为熟悉命令行操作的用户提供了便捷的启动方式,同时也便于自动化脚本调用和集成到其他工作流程中。 在提供的压缩包文件中,我们可以看到以下几个文件: - **Excel对比工具.exe**:这是程序的可执行文件,双击即可运行工具,进行Excel对比操作。 - **config**:这个文件可能是配置文件,存储了用户的设置或者工具的默认参数,如对比选项、颜色设置等。 - **pic**:这个文件夹可能包含了一些图标或者帮助文档中的图片,用于增强用户界面的视觉效果或解释工具的使用方法。 - **temp**:临时文件夹,通常用于存放程序运行过程中产生的临时数据或中间结果,用户一般无需直接操作这个文件夹。 这个Excel对比工具是基于Python开发的一款实用软件,适用于需要频繁比较Excel数据的工作场景,例如数据分析、财务审计或项目管理等。其高效、直观的特点以及CMD支持,使其在处理大量数据时表现出色。
2025-04-02 17:44:36 56.18MB Excel对比工具
1
基于Lyapunov模型预测控制方法的AUV路径跟踪与fossen动力学模型复现分析:与优化算法和反步法对比研究,基于Lyapunov模型的MPC方法在AUV路径跟踪问题中的应用与对比研究,5-顶刊复现,基于Lyapunov的模型预测控制MPC方法,用于控制水下机器人AUV的路径跟踪问题trajectory tracking 具体的方法和建模过程可以参考文献。 本代码包括水下机器人的fossen动力学模型,matlab的优化算法求解器,还包括非线性反步法backstepping 的对比代码非常划算,两种对比都有。 ,顶刊复现; Lyapunov模型预测控制MPC; 水下机器人AUV路径跟踪; fossen动力学模型; matlab优化算法求解器; 非线性反步法backstepping对比,基于Lyapunov MPC方法的AUV路径跟踪研究
2025-03-30 00:33:50 3.65MB xhtml
1