# 基于ROS和g2o框架的TEB局部路径规划器 ## 项目简介 本项目是一个基于ROS(机器人操作系统)和g2o优化框架的局部路径规划器,名为TEB(Timed Elastic Band)局部路径规划器。该项目主要用于移动机器人的导航任务,通过优化机器人的轨迹来实现高效、安全的局部路径规划。 ## 项目的主要特性和功能 1. 路径规划优化使用g2o框架进行轨迹优化,支持多种约束条件,包括障碍物避碰、速度限制、加速度限制、路径最短、机器人运动学模型等。 2. 动态障碍物处理能够处理动态障碍物的移动,并实时更新路径规划。 3. 可视化支持提供丰富的可视化功能,包括路径、障碍物、机器人模型等的可视化。 4. 多轨迹管理支持多轨迹的管理和优化,选择最佳轨迹进行执行。 5. 速度和姿态控制提供精确的速度和姿态控制,确保机器人按照规划的路径平稳移动。 6. 路径规划图构建通过图搜索算法构建路径规划图,支持深度优先搜索和概率路线图方法。 ## 安装使用步骤
2025-04-19 14:53:41 392KB
1
人工势场法(Potential Field Method)是一种在机器人路径规划领域广泛应用的方法,它的核心思想是将环境中的静态障碍物和目标点视为产生势场的源,通过计算机器人在这些势场中的运动趋势来规划安全且有效的路径。这种方法结合了物理学中的势能概念,使机器人能够动态地避开障碍并趋向于目标。 在“PotentialFields.rar”压缩包中,我们可以找到关于这个主题的相关资料,这可能包括MATLAB代码、理论解释和示例应用。MATLAB是一种强大的编程和计算环境,特别适合于数值计算和科学工程问题,因此它是实现人工势场法的理想工具。 人工势场法主要包含两个关键组成部分:障碍物势场和目标势场。障碍物势场通常表现为排斥势,使得机器人远离障碍;目标势场表现为吸引势,引导机器人朝向目标。在规划过程中,机器人试图沿着势场梯度下降的方向移动,以同时避开障碍和接近目标。 1. **障碍物势场**:对于每一个障碍物,可以定义一个势函数,其值随着机器人与障碍物距离的减小而增大。这样,机器人会受到一个指向远离障碍物的力,从而实现避障。在实际计算中,可以采用如余弦函数或指数函数等衰减模型。 2. **目标势场**:目标点产生的势场是吸引性的,其势函数随机器人与目标距离的增加而减小。机器人受到的力会引导它趋向目标。 3. **梯度下降算法**:在MATLAB中,可以使用梯度下降算法来计算机器人在当前位置的最优移动方向。这个算法基于势场的负梯度方向,因为这个方向是势能下降最快的方向。通过迭代更新机器人的位置,直到达到目标点或满足某个停止条件。 4. **路径优化**:虽然人工势场法可以快速生成初始路径,但原始方法可能存在局部最小值问题,导致机器人陷入无法到达目标的困境。可以通过改进算法,如引入全局搜索策略、动态调整势场参数或者结合其他路径规划方法,来提高路径的质量。 在实际应用中,需要考虑如何有效地构建和更新势场,以及如何处理多个障碍物和动态环境的挑战。此外,计算效率也是一个重要的考虑因素,特别是在实时性要求高的场合。 “PotentialFields.rar”中的内容可能提供了从理论到实践的完整教程,涵盖了人工势场法的基本原理、MATLAB实现以及可能的优化策略。通过学习和理解这些材料,读者可以掌握如何利用这种方法解决机器人路径规划问题。
2025-04-17 15:24:48 24KB matlab 人工势场法 路径规划
1
基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序(含注释) 包含传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 在现代机器人技术研究领域中,路径规划算法是实现机器人自主导航与移动的关键技术之一。路径规划旨在使机器人从起点出发,通过合理的路径选择,避开障碍物,安全高效地到达终点。随着算法的不断发展,人们在传统的路径规划算法基础上提出了诸多改进方案,以期达到更好的规划效果。在这些方案中,改进的A*算法与动态窗口法(DWA)的结合成为了研究热点。 A*算法是一种广泛使用的启发式搜索算法,适用于静态环境下的路径规划。它基于启发信息估计从当前节点到目标节点的最佳路径,通过优先搜索成本最小的路径来达到目标。然而,A*算法在处理动态环境或者未知障碍物时存在局限性。为此,研究者们提出了改进A*算法,通过引入新的启发式函数或者优化搜索策略,以提升算法在复杂环境中的适应性和效率。 动态窗口法(DWA)则是一种局部路径规划算法,它通过在机器人当前速度空间中选取最优速度来避开动态障碍物。DWA通过评估在一定时间窗口内,机器人各个速度状态下的路径可行性以及与障碍物的距离,以避免碰撞并保持路径的最优性。然而,DWA算法通常不适用于长距离的全局路径规划,因为其只在局部窗口内进行搜索,可能会忽略全局路径信息。 将改进A*算法与DWA结合,可以充分利用两种算法的优势,实现对全局路径的规划以及对局部动态障碍物的即时响应。在这种融合策略下,改进A*算法用于全局路径的规划,设定机器人的起点和终点,同时考虑静态障碍物的影响。在全局路径的基础上,DWA算法对局部路径进行规划,实时调整机器人的运动状态,以避开动态障碍物。这种策略不仅保持了与障碍物的安全距离,还能有效应对动态环境中的复杂情况。 此外,该仿真程序还具备一些实用功能。用户可以自行设定地图尺寸和障碍物类型,无论是未知的动态障碍物还是静态障碍物,仿真程序都能进行有效的路径规划。仿真结果会以曲线图的形式展现,包括角速度、线速度、姿态和位角的变化,同时提供了丰富的仿真图片,便于研究者分析和比较不同算法的性能。这些功能不仅提高了仿真程序的可用性,也增强了研究者对算法性能评估的直观理解。 改进A*算法与DWA算法的融合是机器人路径规划领域的一个重要进展。这种融合策略通过全局规划与局部调整相结合的方式,提升了机器人在复杂和动态环境中的导航能力,使得机器人能够更加智能化和自主化地完成任务。随着算法研究的不断深入和技术的不断进步,未来的机器人路径规划技术将会更加成熟和高效。
2025-04-14 15:03:42 2.89MB edge
1
内容概要:本文详细介绍了将A*算法与动态窗口法(DWA)相结合用于路径规划的方法及其优化。首先,针对传统A*算法在动态环境中表现不佳的问题,作者提出了一系列改进措施,如优化节点选择策略、删除冗余节点以及引入地形系数等。接着,在A*生成的全局路径基础上,利用DWA进行局部路径规划,确保机器人能够灵活应对突发的动态障碍。此外,文中还讨论了算法融合过程中可能遇到的问题及解决方案,并展示了具体的MATLAB代码片段。实验结果显示,改进后的混合算法不仅提高了路径规划效率,而且增强了机器人的避障能力和灵活性。 适合人群:从事机器人导航研究的技术人员、高校相关专业师生。 使用场景及目标:适用于需要高效路径规划和动态避障的应用场合,如智能仓储物流、无人驾驶车辆等领域。目的是提高机器人在未知或变化环境中的自主行动能力。 其他说明:文中提供的代码为简化版本,具体应用时还需根据实际情况调整参数设置并完善功能模块。
2025-04-11 09:27:29 806KB
1
,,2023TRANS(顶刊) 基于人工势场和 MPC COLREG 的无人船复杂遭遇路径规划 MATLAB 源码+对应文献 船舶会遇避碰 船舶运动规划是海上自主水面舰艇(MASS)自主导航的核心问题。 本文提出了一种新颖的模型预测人工势场(MPAPF)运动规划方法,用于考虑防撞规则的复杂遭遇场景。 建立了新的船舶域,设计了闭区间势场函数来表示船舶域的不可侵犯性质。 采用在运动规划过程中具有预定义速度的Nomoto模型来生成符合船舶运动学的可跟随路径。 为了解决传统人工势场(APF)方法的局部最优问题,保证复杂遭遇场景下的避碰安全,提出一种基于模型预测策略和人工势场的运动规划方法,即MPAPF。 该方法将船舶运动规划问题转化为具有操纵性、航行规则、通航航道等多重约束的非线性优化问题。 4个案例的仿真结果表明,所提出的MPAPF算法可以解决上述问题 与 APF、A-star 和快速探索随机树 (RRT) 的变体相比,生成可行的运动路径,以避免在复杂的遭遇场景中发生船舶碰撞。 ,则性要求;基于TRANS(顶刊);MPC;人工势场;COLREG;避碰规则;复杂遭遇场景路径规划;
2025-04-10 21:25:07 2.08MB
1
《基于改进动态窗口DWA模糊自适应调整权重的路径规划算法研究及其MATLAB实现》,《基于改进动态窗口DWA的模糊自适应权重调整路径规划算法及其MATLAB实现》,基于改进动态窗口 DWA 模糊自适应调整权重的路径基于改进动态窗口 DWA 模糊自适应调整权重的路径规划算法 MATLAB 源码+文档 《栅格地图可修改》 基本DWA算法能够有效地避免碰撞并尽可能接近目标点,但评价函数的权重因子需要根据实际情况进行调整。 为了提高DWA算法的性能,本文提出了一种改进DWA算法,通过模糊控制自适应调整评价因子权重,改进DWA算法的实现过程如下: 定义模糊评价函数。 模糊评价函数是一种能够处理不确定性和模糊性的评价函数。 它将输入值映射到模糊隶属度,根据规则计算输出值。 在改进DWA算法中,我们定义了一个三输入一输出的模糊评价函数,输入包括距离、航向和速度,输出为权重因子。 [1]实时调整权重因子。 在基本DWA算法中,权重因子需要根据实际情况进行调整,这需要人工干预。 在改进DWA算法中,我们通过模糊控制实现自适应调整,以提高算法的性能。 [2]评估路径。 通过路径的长度和避障情况等指标评估路
2025-04-09 00:13:40 1.05MB rpc
1
基于灰狼优化算法的机器人三维路径规划:mp-GWO与CS-GWO算法对比及详细代码注释,三维路径规划:基于灰狼改进算法的MP-GWO与CS-GWO机器人路径规划算法对比,内含详细代码注释,三维路径规划 基于灰狼改进算法的机器人路径规划mp-GWO和CS-GWO机器人路径规划算法 自由切GWO,CS-GWO算法进行对比。 内涵详细的代码注释 ,三维路径规划; 灰狼改进算法; 机器人路径规划算法; mp-GWO; CS-GWO; 算法对比; 代码注释,基于灰狼优化算法的三维机器人路径规划研究:mp-GWO与CS-GWO算法的对比与代码详解
2025-04-08 16:24:47 1.09MB 数据结构
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-08 16:19:52 3.07MB matlab
1
"混合A*(Hybrid A*)路径规划算法详解:逐行源码解析与Matlab实践",逐行讲解hybrid astar路径规划 混合a星泊车路径规划 带你从头开始写hybridastar算法,逐行源码分析matlab版hybridastar算法 ,逐行讲解; hybrid astar路径规划; 混合a星泊车路径规划; 逐行源码分析; matlab版hybridastar算法。,Hybrid A* 路径规划算法的 MATLAB 源码解析 在现代自动驾驶和智能导航系统中,路径规划是关键的技术之一。混合A*(Hybrid A*)算法作为路径规划领域的一个重要分支,近年来受到了广泛的关注和研究。这种算法结合了传统A*算法的启发式搜索和梯度下降的优点,能够有效地应用于复杂环境下的路径规划问题,尤其是在泊车等场景中显示出了其独特的优势。 Hybrid A*算法的核心思想在于将路径划分为不同的区域,在每个区域内使用不同的搜索策略。在开阔区域,利用A*算法的启发式特性快速找到目标点的大概方向;而在障碍物密集或者路径狭窄的区域,则通过梯度下降的策略进行局部优化,以避免路径的局部最优解。这种混合策略使得算法不仅能够保持较高的搜索效率,还能够保证找到的路径具有良好的实时性和适应性。 在实现Hybrid A*算法时,Matlab作为一种强大的数学计算和仿真平台,被广泛应用于算法的开发和测试。Matlab提供的矩阵运算能力和丰富的数学函数库,使得算法的原型设计、参数调优和结果验证都变得相对简单直观。通过Matlab,开发者可以快速地将算法思路转化为代码,并通过图形化界面直观地展示算法的搜索过程和最终结果。 具体到文件名称中的内容,它们似乎是一系列关于Hybrid A*算法的讲解文档和图像资料。文件名称暗示了内容的结构,比如“路径规划算法详解在自动驾驶和智.doc”可能包含了关于算法在自动驾驶领域应用的详细介绍;“混合路径规划算法是一种广泛应用于自动.doc”可能涉及算法的广泛适用性和具体应用场景分析;“路径规划算法的逐行讲解引言算法是一种结合.html”和“逐行讲解路径规划混合星泊车路径规划带你从头开始.html”则表明了文件中包含了对算法原理和实现的逐行讲解。这些文档和图像资料为学习和应用Hybrid A*算法提供了宝贵的资源。 综合来看,混合A*算法在路径规划领域的应用十分广泛,特别是在需要考虑实时性和环境适应性的自动驾驶领域。Matlab平台的使用进一步推动了算法的研究和应用。通过阅读和理解这些文件,可以更深入地掌握Hybrid A*算法的原理和实现,为实际问题的解决提供坚实的理论基础和技术支持。
2025-04-01 10:51:47 851KB safari
1
基于Matlab的局部路径规划算法研究:结合阿克曼转向系统与DWA算法的车辆轨迹优化与展示,动态、静态障碍物局部路径规划(matlab) 自动驾驶 阿克曼转向系统 考虑车辆的运动学、几何学约束 DWA算法一般用于局部路径规划,该算法在速度空间内采样线速度和角速度,并根据车辆的运动学模型预测其下一时间间隔的轨迹。 对待评价轨迹进行评分,从而获得更加安全、平滑的最优局部路径。 本代码可实时展示DWA算法规划过程中车辆备选轨迹的曲线、运动轨迹等,具有较好的可学性,移植性。 代码清楚简洁,方便更改使用 可在此基础上进行算法的优化。 ,动态障碍物; 静态障碍物; 局部路径规划; MATLAB; 自动驾驶; 阿克曼转向系统; 车辆运动学约束; 几何学约束; DWA算法; 轨迹评分; 实时展示; 代码简洁。,基于DWA算法的自动驾驶局部路径规划与车辆运动学约束处理(Matlab实现)
2025-03-31 22:32:23 132KB 哈希算法
1