针对机械臂运动轨迹控制中存在的跟踪精度不高的问题,采用了一种基于EC-RBF神经网络的模型参考自适应控制方案对机械臂进行模型辨识与轨迹跟踪控制。该方案采用了两个RBF神经网络,运用EC-RBF学习算法,采用离线与在线相结合的方法来训练神经网络,一个用来实现对机械臂进行模型辨识,一个用来实现对机械臂轨迹跟踪控制。对二自由度机械臂进行仿真,结果表明,使用该控制方案对机械臂进行轨迹跟踪控制具有较高的控制精度,且因采用EC-RBF学习算法使网络具有更快的训练速度,从而使得控制过程较迅速。
2025-05-07 20:14:03 609KB 论文研究
1
Matlab实现BP神经网络K折交叉验证与Kfold参数寻优案例:优化模型性能的实用方法,Matlab实现BP神经网络K折交叉验证与Kfold参数寻优案例:优化模型性能的实用方法,Matlab实现BP神经网络K折交叉验证,Kfold寻参案例 ,Matlab; BP神经网络; K折交叉验证; Kfold寻参案例; 参数优化。,Matlab实现K折交叉验证BP神经网络寻参案例 BP神经网络,即反向传播神经网络,是人工神经网络的一种,主要用于分类和回归等机器学习任务。在实际应用中,为了提高模型的泛化能力和预测精度,K折交叉验证和参数寻优是不可或缺的步骤。K折交叉验证是指将原始数据集随机分为K个大小相似的互斥子集,每次用K-1个子集的合集作为训练集,剩下的一个子集作为测试集,这样可以循环K次,最终得到K个测试结果的平均值作为模型的性能指标。这种方法能有效评估模型在未知数据上的表现,避免过拟合现象的发生。 参数寻优,尤其是针对BP神经网络,主要是通过搜索算法找到最优的网络结构和权重参数。其中Kfold参数寻优是指在K折交叉验证的基础上,对每个训练集再进行K折交叉验证,从而对模型参数进行精细调优。Kfold寻参可以使用网格搜索、随机搜索或者贝叶斯优化等方法来实现。 在Matlab环境中实现这些功能,需要对Matlab编程语言和神经网络工具箱有较深的了解。Matlab提供了强大的函数库和工具箱,其中神经网络工具箱可以帮助用户快速搭建和训练神经网络模型。通过编写相应的Matlab脚本,可以方便地实现BP神经网络的构建、训练、测试以及K折交叉验证和参数寻优。 案例分析是理解理论和实践相结合的重要途径。本案例通过实际数据集的应用,展示了如何使用Matlab实现BP神经网络模型的构建,并通过K折交叉验证和参数寻优方法来提升模型性能。通过对比不同参数设置下的模型表现,分析和探讨了参数对模型性能的影响,从而找到最优化的模型配置。 文章中提到的“柔性数组”这一标签可能指的是一种数据结构或者编程中的数组应用技巧,但在神经网络和交叉验证的上下文中没有提供足够的信息来解释其具体含义。这可能是一个笔误或者是与案例分析不相关的独立研究主题。 本案例详细介绍了在Matlab环境下实现BP神经网络、进行K折交叉验证以及参数寻优的步骤和方法,通过实际操作提高模型性能,具有较高的实用价值和指导意义。文章强调了理论与实践相结合的重要性,并通过具体的案例分析加深了读者对这些概念的理解。
2025-05-07 19:37:24 2.85MB 柔性数组
1
Boost电路是一种常见的直流-直流变换器,广泛应用于电源管理、电池充电器、LED驱动器等领域。其核心作用是提升输入电压,输出一个高于输入的稳定直流电压。Boost电路主要包含一个开关、一个电感、一个二极管和一个电容。在工作过程中,开关交替导通和截止,通过电感和电容的储能和释能作用,实现电压的提升和输出电压的稳定。 滑模控制(Sliding Mode Control,SMC)是一种特殊的非线性控制方法,其基本思想是通过控制作用强迫系统状态轨迹达到并沿着预定的滑模面运动。滑模控制具有快速响应、良好的鲁棒性及对参数变化和外部扰动不敏感等特点,使其在电机驱动、机器人控制和电力电子等领域具有广泛的应用。滑模控制在Boost电路中的应用,主要是为了改善电路的动态性能和提高对外界干扰的抵抗力。 文章复现指的是对已发表的学术文章中的实验和结果进行重现和验证的过程。在电力电子领域,对Boost电路和SMC滑模控制的研究文章进行复现,不仅可以检验原有研究的准确性和可靠性,也能够帮助研究者进一步理解控制算法的实现过程,探索其在不同条件下的表现。此外,复现过程中可能发现新的问题或者优化方向,推动相关领域知识的发展和技术的进步。 在本压缩包中包含的文件有:电路滑模控制文章复现.html,这个文件可能是一个网页文档,用于展示复现过程中的电路设计、控制策略、实验结果等详细信息;2.jpg、1.jpg和3.jpg,这些图片文件可能是电路图、实验波形图或是其他相关的图表;电路滑模控制文章复.txt、电路滑模控制.txt和电路滑模控制文章复现.txt,这些文本文件可能是复现过程中使用的代码、设计说明、实验步骤或者数据分析等内容。通过这些文件的综合分析,可以完整地复现并验证Boost电路在SMC滑模控制下的性能。 根据以上信息,我们可以总结出Boost电路、SMC滑模控制以及文章复现的基本知识点:1) Boost电路的结构和工作原理;2) SMC滑模控制的设计方法和特点;3) 文章复现的重要性以及在电力电子领域的作用。这些知识点对于电子工程师和研究人员在设计高效、稳定的电源系统方面具有重要的参考价值。
2025-05-06 20:39:51 287KB
1
研究生神经网络复习资料,一个Word中包括重点知识点、全部知识点以及神经网络网课答案(包括网课期末答案),期末考试用这个绝对没问题。整理不易,多多支持! 神经网络是一种模拟人脑神经结构的信息处理系统,其基本构成单元是神经元,这些神经元按照一定的连接方式形成网络,通过权重和激活函数处理输入信息。神经网络的主要特征包括并行处理、分布式存储以及自学习、自组织和自适应能力。它们能够执行多种任务,如联想记忆、非线性映射、分类、优化、图像分析和识别。 在人工神经网络的建模中,学习的本质是通过不断调整网络的权值和结构,使网络的输出接近期望输出。这通常涉及三个关键要素:数学模型(如激活函数),拓扑结构(如层次型或互联型,前馈或反馈网络),以及学习方式(有导师学习、无导师学习或死记式学习)。例如,感知器是最简单的神经网络模型,它可以解决线性问题,而多层感知器则能处理非线性问题。感知器的学习规则包括权值初始化、输入样本对、计算输出、根据感知器学习规则调整权值,直至达到期望输出。 反向传播(BP)网络是基于有导师学习的一种网络,利用梯度下降算法调整权重,以减小输出误差。在训练过程中,首先准备样本信息,定义网络结构,然后进行正向传播计算节点输出,计算损失函数,接着通过反向传播误差来更新权重,这个过程不断重复,直到误差达到预设阈值或达到最大迭代次数。 梯度下降算法是优化神经网络权重的常用方法,其核心是沿着目标函数梯度的负方向更新参数,以最小化损失函数。自组织竞争神经网络,如自组织映射(SOM)网络,采用“胜者为王”规则,其中输出神经元竞争激活,获胜神经元及其邻域的权重会得到更新,形成有序特征图。另一种竞争学习策略是局部竞争算法(LVQ),它结合了监督学习,确定输入和输出层节点数时要考虑输入数据的特征数和分类问题的类别数。 径向基函数(RBF)神经网络在隐层的每个节点上,其净输入量是输入向量与中心向量的距离的函数,通常使用径向基函数(如高斯函数)来计算。RBF网络常用于函数逼近和分类任务,因其快速收敛和良好的非线性拟合能力而受到青睐。 总结来说,神经网络是复杂信息处理的工具,涵盖了从简单的感知器模型到更复杂的RBF网络等多种架构。它们通过学习和调整权重来适应不同任务,广泛应用于各个领域,包括计算机视觉、自然语言处理、机器学习和人工智能。理解这些基础知识对于深入研究神经网络及其应用至关重要。
2025-05-06 01:02:13 6.29MB 神经网络
1
人工神经网络(ANN)是受生物神经元网络启发的计算模型,用于模拟人脑神经元之间的连接和信息传递。ANN的主要特点是它具有自适应性、非线性映射能力和并行处理能力。它由大量的处理单元(神经元)组成,这些神经元通过权重连接形成复杂的网络结构。 ANN的学习过程主要分为监督学习、无监督学习和强化学习。Rosenblatt提出的感知器学习定理是监督学习中的一个基础概念,它描述了如何通过调整权重来使网络正确分类或预测给定的输入。 多层感知器(MLP)网络是一种前馈神经网络,包含至少一个隐藏层,能够处理非线性可分问题。Kohonen网络,也称为自组织映射(SOM),是一种无监督学习网络,用于数据聚类和可视化,它通过竞争学习机制自我组织。Hopfield网络则是用于联想记忆和优化问题的反馈网络,其状态会在能量函数最小化的过程中达到稳定。 受限玻尔兹曼机(RBM)是用于特征学习和生成模型的无监督网络,它利用两层神经元间的相互作用进行采样。双向联想记忆网(BAM)是一种能够存储和检索序列信息的反馈网络,而Hopfield网主要用于解决优化问题和实现稳定的状态。RBM、BAM和Hopfield网在应用上主要区别在于它们处理数据的方式和目标问题的性质。 为了加速MLP网络的学习过程,可以采用批处理学习、动量法、学习率衰减、正则化和早停策略等技术,这些方法有助于收敛速度的提升和模型泛化性能的改善。 Grossberg的ART网络结合模拟退火方法,可以在学习和工作过程中提高网络的稳定性和鲁棒性,避免陷入局部最优。模拟退火算法模仿了固体冷却过程中原子状态变化的过程,通过引入随机性来全局搜索解决方案空间。 在智能合约分类问题中,ANN可以扮演关键角色。例如,可以采用RNN,特别是LSTM模型,来处理代码序列。LSTM通过其门控机制有效处理长时序依赖,适合处理代码中的上下文信息。将代码转化为抽象语法树(AST)并提取特征,如代码长度、变量数量等,再使用词向量方法如word2vec将代码片段编码为向量。这些向量作为LSTM的输入,经过训练后,模型可以预测代码的类别。 卷积神经网络(CNN)在处理网格状数据如图像时表现出色,其结构包括输入层、卷积层、池化层、激活函数层和全连接层。CNN通过卷积操作捕获局部特征,池化层减少计算量,全连接层进行分类决策。 在处理噪声方面,神经网络可能会受到数据噪声、训练噪声、网络结构噪声和算法噪声的影响。为了提高模型的稳健性,需要采取数据清洗、正则化、dropout等技术来减少噪声对模型性能的影响。 总结而言,人工神经网络是强大的机器学习工具,广泛应用于分类、回归、聚类和优化等任务。通过理解其基本原理、不同类型的网络结构以及噪声处理方法,可以更好地设计和优化神经网络模型以解决实际问题。在教育和考试环境中,掌握这些知识点是确保理解和应用神经网络的关键。
2025-05-06 00:47:29 13.71MB 神经网络
1
机器学习算法Python实现——线性回归,逻辑回归,BP神经网络 机器学习算法Python实现 一、线性回归 1、代价函数 2、梯度下降算法 3、均值归一化 4、最终运行结果 5、使用scikit-learn库中的线性模型实现 二、逻辑回归 1、代价函数 2、梯度 3、正则化 4、S型函数(即) 5、映射为多项式 6、使用的优化方法 7、运行结果 8、使用scikit-learn库中的逻辑回归模型实现 逻辑回归_手写数字识别_OneVsAll 1、随机显示100个数字 2、OneVsAll 3、手写数字识别 4、预测 5、运行结果 6、使用scikit-learn库中的逻辑回归模型实现 三、BP神经网络 1、神经网络model 2、代价函数 3、正则化 4、反向传播BP 5、BP可以求梯度的原因 6、梯度检查 7、权重的随机初始化 8、预测 9、输出结果 四、SVM支持向量机 1、代价函数 2、Large Margin 3、SVM Kernel(核函数) 4、使用中的模型代码 5、运行结果 五、K-Means聚类算法 1、聚类过程 2、目标函数 3、聚类中心的选择 4、聚类个数K的选择
2025-05-05 19:54:36 34.1MB 神经网络 机器学习 python 线性回归
1
https://blog.csdn.net/yyywxk/article/details/143924743 按此网页修改代码 修改完代码后进入causal-conv1d-1.5.0.post6和mamba-2.2.4文件夹分别执行下面命令安装 pip install . pip install . --no-build-isolation --verbose https://blog.csdn.net/qq_44810930/article/details/142780083 按此网页生成wheel 进入causal-conv1d-1.5.0.post6和mamba-2.2.4文件夹执行下面得到dist文件夹下whl文件 python setup.py bdist_wheel 环境 :Windows11 CUDA12.5 Python 3.11 pytorch_cuda12.4 包含内容: mamba_ssm-2.2.4-cp311-cp311-win_amd64.whl causal_conv1d-1.5.0.post6-cp311-cp311-win_amd64.whl Windows下需要修改代码 mamba-2.2.4.tar.gz Windows下需要修改代码 causal-conv1d-1.5.0.post6.zip
2025-05-04 22:10:38 403.52MB 神经网络 人工智能
1
内容概要:本文介绍了一种改进的EfficientNet模型,主要增加了ContextAnchorAttention(CAA)模块。该模型首先定义了基础组件,如卷积层、批归一化、激活函数、Squeeze-and-Excitation(SE)模块以及倒残差结构(Inverted Residual)。CAA模块通过选择最具代表性的锚点来增强特征表示,具体步骤包括通道缩减、选择锚点、收集锚点特征、计算查询、键、值,并进行注意力机制的加权融合。EfficientNet的构建基于宽度和深度系数,通过调整每个阶段的卷积核大小、输入输出通道数、扩展比例、步长、是否使用SE模块等参数,实现了不同版本的EfficientNet。最后,模型还包括全局平均池化层和分类器。 适合人群:对深度学习有一定了解并希望深入研究图像分类模型的设计与实现的研究人员或工程师。 使用场景及目标:①理解EfficientNet架构及其改进版本的设计思路;②掌握如何通过引入新的注意力机制(如CAA)来提升模型性能;③学习如何使用PyTorch实现高效的神经网络。 阅读建议:由于本文涉及大量代码实现细节和技术背景知识,建议读者具备一定的深度学习理论基础和PyTorch编程经验。同时,在阅读过程中可以尝试复现代码,以便更好地理解各模块的功能和作用。
1
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1
CNN卷积神经网络 FPGA加速器实现(小型)CNN FPGA加速器实现(小型) 仿真通过,用于foga和cnn学习 通过本工程可以学习深度学习cnn算法从软件到硬件fpga的部署。 网络软件部分基于tf2实现,通过python导出权值,硬件部分verilog实现,纯手写代码,可读性高,高度参数化配置,可以针对速度或面积要求设置不同加速效果。 参数量化后存储在片上ram,基于vivado开发。 直接联系提供本项目实现中所用的所有软件( python)和硬件代码( verilog)。 本篇文档主要探讨了如何将CNN卷积神经网络算法从软件层面迁移到硬件层面,具体来说就是使用FPGA硬件加速器来实现CNN模型。文档中提到的“小型CNN FPGA加速器”指的是针对卷积神经网络的小型化硬件实现,该项目已经通过了仿真测试,并且可用于深度学习领域的研究与教学。 文档描述了整个CNN算法的软件部分是基于TensorFlow 2框架实现的,这一部分主要是用Python编程语言来完成。在软件层面上,它包括了将CNN模型的权重导出的步骤。硬件实现则是通过Verilog硬件描述语言来完成的,这部分代码是完全手动编写的,保证了高可读性和便于理解。此外,该FPGA加速器设计是高度参数化的,允许用户根据对速度或面积的不同需求来配置加速效果。 在设计过程中,对参数进行了量化处理,并将这些量化后的数据存储在片上RAM中。整个设计过程是在Xilinx的Vivado开发环境中进行的。文档还提到,提供本项目实施中所使用的所有软件代码和硬件代码,这表明项目具有开放性,便于其他研究者和开发者进行学习和实验。 从文档提供的文件名称列表来看,包含了多个与项目相关的文件,这些文件很可能包含了项目的设计细节、实现方法、仿真结果和版图解析等内容。例如,“卷积神经网络加速器实现小版图解析”可能详细描述了FPGA加速器的硬件布局,“卷积神经网络加速器实现从软件到”可能探讨了从软件算法到硬件实现的转换过程。这些文件是了解和学习该项目不可或缺的资源。 本项目是一个将深度学习算法从软件迁移到FPGA硬件平台的实践案例,通过结合TensorFlow 2和Verilog语言,实现了一个可配置参数的CNN模型加速器。项目的设计充分考虑到了代码的可读性和灵活性,并提供了完整的实现代码,便于研究和教育使用。
2025-05-02 16:43:41 397KB scss
1