基于SpringBoot宠物领养系统,系统包含两种角色:管理员、用户,系统分为前台和后台两大模块,主要功能如下。 前台: 1. 首页:展示宠物领养相关信息和公告。 2. 宠物领养:用户可以查看并申请领养宠物。 3. 宠物认领:用户可以发布宠物认领信息。 4. 感谢信:用户可以发布领养宠物后的感谢信。 5. 教学视频:展示相关的宠物教育和训练视频。 6. 公告:展示系统内部公告信息。 7. 个人中心:用户可以管理个人信息和查看领养记录和认领记录。 后台: 用户: 1. 个人中心:管理个人信息和进行相关操作。 2. 宠物领养管理:管理员宠物领养信息和审核领养申请。 3. 宠物认领管理:管理员宠物认领信息和审核认领申请。 4. 教学视频管理:管理宠物教育和训练视频。 5. 感谢信管理:管理领养宠物后的感谢信。 6. 公告管理:发布和管理系统内部公告信息。 管理员: 1. 个人中心:管理管理员个人信息和进行相关操作。 2. 管理员管理:管理系统内部管理员信息和权限。 3. 用户管理:管理系统内部用户信息和权限设置。 4. 宠物领养管理:管理宠物领养信息和审核领养申请。 5. 宠物认领管理
2025-04-28 21:23:24 20.59MB 毕业设计
1
机器学习西瓜书学习笔记第1-3章,附第二章模型评估与选择/第三章线性模型算法代码。对应的笔记可参考相应博客。 深入探讨了经验误差与过拟合等关键概念,旨在为读者提供对机器学习中常见问题的基本理解。随后,本章转向模型评估的领域,系统阐述了评估方法与度量方法。评估方法强调了对数据集的全面利用,而度量方法则聚焦于构建模型评价的量化标准。进一步地,本章介绍了校验方法,这一环节对于确保模型评估结果的准确性与可信度至关重要。最后,本章从理论角度出发,对学习器的性能进行了深入分析,旨在为读者揭示学习器行为背后的原理与机制。 一种统计学方法,用于建模和分析两个变量之间的关系:一个因变量和一个或多个自变量。它试图找到自变量和因变量之间的线性关系,这种关系通常用一个方程来表示,这个方程通常被称为线性回归方程。
2025-04-28 20:25:51 1.4MB 机器学习
1
· 功能说明:代码实现了基于YOLO模型的摔倒行为实时检测,当连续检测到摔倒的帧数超过设定阈值时触发报警。 · · 过程说明:通过摄像头获取视频流帧数据,利用YOLO模型进行目标检测,统计摔倒行为的连续帧数,并在达到报警条件时触发提示或报警逻辑。 基于YOLO模型的摔倒行为实时检测技术是一种利用深度学习方法实现的视觉监测系统,其主要功能是在实时视频流中检测人的摔倒行为,并在识别到摔倒动作后触发报警。这项技术在老年人居家照护、公共场所安全监控等领域具有广泛的应用前景。YOLO模型(You Only Look Once)是一种流行的实时对象检测算法,它能够在单一网络中同时进行目标定位和分类,具有速度快、精度高的特点,非常适合于实时视频分析场景。 YOLO模型的摔倒行为实时检测流程主要包括以下几个步骤:系统通过摄像头设备获取实时视频流的帧数据;将获取的视频帧输入到YOLO模型中进行目标检测,得到包含类别ID、置信度和边界框信息的检测结果;接下来,系统会检查检测结果中是否存在摔倒行为(即类别ID为设定的摔倒类别标识),并统计连续检测到摔倒行为的帧数;当连续帧数超过设定的阈值时,系统将触发报警机制,如在视频中叠加报警提示文字或执行其他报警逻辑,如发送通知到远程设备。 代码实现方面,需要进行模型初始化、视频流读取、YOLO模型预测、摔倒行为判断与报警提示的绘制等操作。具体来说,首先需要安装YOLOv5等模型库,并加载预训练的模型文件;然后,初始化摄像头视频流,并设置摔倒行为的类别标识和报警阈值;在循环读取视频帧的同时,利用YOLO模型进行实时目标检测,并根据检测结果判断是否为摔倒行为;如果检测到摔倒行为,则增加摔倒帧数计数器,并在满足报警条件时输出报警提示;显示处理后的视频,并允许用户通过按键退出程序。 在技术应用中,此类实时摔倒检测系统需要考虑算法的准确性和鲁棒性,例如通过优化YOLO模型训练过程中的数据集和参数设置,以提高对摔倒行为识别的准确率,并减少误报和漏报的情况。同时,系统也应具备良好的可扩展性和易用性,使得非专业人员也能简单快捷地部署和使用。
2025-04-28 19:57:34 13KB yolo
1
matlab tsp问题代码Traveling Santa 2018-Prime Paths(Kaggle竞赛) 这是我为2018年旅行圣诞老人创建的代码,这是我第一次参加Kaggle比赛,我获得了210/1874的排名(排名前12%)。 这是一个高度参与的竞赛,吸引了Bill Cook和Keld Helsgaun等顶尖研究人员参加,他们最终赢得了比赛。 这个问题与带有197769个城市的TSP非常相似。 竞争图如下所示,红色节点代表第一个/最后一个节点。 (从下载city.csv文件。) 但是,有一个扭曲:提交是根据您提交的路径的欧几里得距离进行评分的,但前提是每10个步骤的长度要增加10%,除非来自主要的CityId。 我的方法是首先找到不考虑质数惩罚的最佳汉密尔顿周期,然后从该初始解中进行优化。 第1步-LKH 我使用开源代码找到了解决此问题的最佳汉密尔顿周期。 在微调其参数后,我让它运行2天,偶尔会中断。 概括地说,我的方法是: 设置相当长的初始时间以在第一次运行中使用梯度上升来计算节点惩罚(万秒) 在第一次运行中,我使用8步顺序移动进行本地搜索,并逐渐减小该数字,直到达到3步
2025-04-28 18:47:27 602KB 系统开源
1
标题中的“基于System View的2DPSK调制解调系统的设计和仿真”是指使用System View软件进行2DPSK(二进制相移键控)调制解调系统的建模与仿真工作。System View是一款广泛应用于通信系统建模与仿真的工具,它允许用户通过图形化界面构建复杂的通信系统模型。 2DPSK是一种数字调制技术,它通过改变信号的相位来传输信息。在2DPSK系统中,通常有两种类型:DBPSK(差分二进制相移键控)和 DQPSK(差分四进制相移键控)。在这个系统中,描述中提到的“差分编码/译码”是关键环节,它能够解决相位模糊问题。在传统的PSK系统中,由于载波同步误差,可能会出现180°的相位不确定性,导致解调时的错误。而差分编码通过比较连续两个符号的相位差来传输信息,即使载波相位发生180°变化,差分解码器仍能正确恢复原始数据,因为相邻符号间的相位差不受此影响。 “相干接收2DPSK系统分析”可能是指PPT文件,其中详细讨论了采用相干检测技术的2DPSK接收机的工作原理和性能分析。相干接收是利用本地载波与接收到的信号进行相干检测,通过比较它们的相位来解调信号,这种方法对于相位信息的检测非常敏感,适合2DPSK系统的应用。 “07通信2 徐斌、吴镛、金华宇.doc”可能是一份实验报告,由徐斌、吴镛和金华宇三位同学共同完成,详细记录了他们在通信课程中的2DPSK调制解调系统设计和仿真实验的过程、结果以及分析。这份文档可能包含了实验目的、理论基础、系统模型建立、仿真参数设置、仿真结果以及结论等内容。 “2DPSK.svu”文件可能是System View的工程文件,保存了2DPSK系统模型的具体配置和参数,可以直接在System View环境中打开进行复现或进一步研究。 综合这些信息,我们可以深入学习2DPSK调制解调技术,了解其在克服相位模糊方面的优势,以及如何使用System View进行系统建模和仿真。此外,还可以通过阅读实验报告和PPT来掌握相干接收的实际应用和系统性能分析方法。这些资料对理解数字通信系统,尤其是2DPSK调制解调技术具有重要的实践价值。
2025-04-28 16:30:05 1.86MB word实验报告
1
这个脚本描述了一个 MATLAB 函数 `MASWaves_inversion`,它用于通过手动反演分析表面波色散曲线,特别是用于MASW(多道面波分析)方法。下面是该函数的主要目的、输入、输出和关键子函数的简单说明: ### 目的: `MASWaves_inversion` 用于通过比较理论的瑞利波相速度色散曲线和实验数据进行反演分析。该函数能够计算理论色散曲线,并评估理论与实验曲线之间的失配度,还允许用户在每次迭代后选择是否保存当前结果。 ### 主要步骤: 1. **计算理论色散曲线**: - 根据层模型的属性(包括 `h`、`alpha`、`beta`、`rho` 和 `n`),函数会计算瑞利波基阶模式的色散曲线,并且该曲线的波长与实验曲线的波长保持一致。 2. **绘制理论与实验曲线**: - 函数会将计算得到的理论色散曲线与输入的实验色散曲线进行对比,并绘制两者的对比图。 3. **评估失配度**: - 函数会计算理论色散曲线和实验曲线之间的失配度(误差),并输出该误差用于反演分析。 ### 输入参数: - `c_test`: 测试的瑞利波
2025-04-28 16:22:43 46.24MB 蒙特卡洛法
1
**基于JSP技术的猎头公司管理软件设计与实现** JSP(JavaServer Pages)是一种在服务器端运行的用于创建动态网页的技术。本项目“基于JSP技术的猎头公司管理软件”旨在提供一个高效、易用且功能全面的管理系统,帮助猎头公司在日常工作中进行候选人管理、客户关系维护、职位发布、业务跟踪等一系列操作。以下是该软件涉及的主要知识点: 1. **JSP基础**: JSP是Java技术的一种表现形式,它允许开发者在HTML页面中嵌入Java代码,以实现动态内容的生成。JSP页面在服务器上被编译成Servlet,然后由Web服务器执行。 2. **MVC架构模式**: 该项目可能采用了Model-View-Controller(模型-视图-控制器)架构,这是一种将业务逻辑、数据和用户界面分离的设计模式。在JSP中,Model代表业务逻辑,View负责展示,Controller处理用户请求并协调Model和View。 3. **JavaBean**: 作为Java对象的封装工具,JavaBean在JSP应用中常用来存储和管理数据。在猎头公司管理软件中,可能会有CandidateBean、ClientBean等,分别对应候选人和客户的数据模型。 4. **数据库连接与SQL操作**: 软件很可能使用了如MySQL或Oracle等关系型数据库来存储信息,JDBC(Java Database Connectivity)用于建立和管理数据库连接。SQL语句用于查询、插入、更新和删除数据。 5. **JSTL与EL表达式**: JSP Standard Tag Library(JSTL)提供了一系列预定义的标签,可以简化页面的编程,如循环、条件判断等。Expression Language(EL)则用于在JSP页面中简便地访问JavaBean属性。 6. **Session与Cookie管理**: 为了保持用户的登录状态和个性化设置,软件可能利用HTTP Session或Cookie技术。Session存储用户信息在服务器端,Cookie则存储在客户端。 7. **安全性考虑**: 考虑到猎头公司的敏感信息,软件可能包含防止SQL注入、XSS攻击的安全措施,并对用户输入进行验证。 8. **响应式设计**: 为了适应不同设备的访问,软件可能采用了响应式布局,确保在手机、平板电脑和桌面电脑上都能良好显示。 9. **源代码分析**: 源代码可能包括JSP页面、Java类文件、配置文件等,提供了深入理解软件工作原理的机会,有助于学习和改进。 10. **论文内容**: 论文部分可能会详细阐述设计思路、技术选型、系统架构、功能模块以及性能测试等方面,为读者提供理论和实践的结合。 通过这个项目,开发者和学习者可以深入了解JSP技术在实际项目中的应用,提升Web开发技能。同时,对于猎头公司来说,这样的管理软件能够大大提高工作效率,优化业务流程。
2025-04-28 13:04:58 757KB
1
**ARM学习报告一二三** ARM(Advanced RISC Machines)架构是一种广泛应用在嵌入式系统、移动设备、服务器等领域的精简指令集计算机(RISC)架构。这份“ARM学习报告”旨在帮助读者深入理解ARM处理器的工作原理以及如何进行基于ARM的开发工作。报告分为三个部分,分别标记为001、002、003,涵盖从基础概念到实际开发应用的广泛内容。 **001:ARM基础** 这部分主要介绍ARM的历史、特点以及在市场上的地位。ARM架构以其低功耗、高性能和灵活性闻名,广泛应用于各种设备,从微控制器到超级计算机。它介绍了ARM指令集的结构,包括寄存器布局、指令编码以及操作模式。此外,还会讨论不同系列的ARM处理器,如Cortex-A、Cortex-R和Cortex-M,它们分别适用于不同的应用场景。 **002:开发环境搭建与编程** 这一部分详细讲解如何设置ARM开发环境,包括选择合适的开发工具链,如GNU Arm Embedded Toolchain,以及安装集成开发环境(IDE),如Keil uVision或Eclipse。读者将学习如何编写、编译和调试ARM汇编代码和C/C++代码。同时,还会涉及连接器、加载器的概念,以及如何生成可执行文件。 **003:在开发板上的实践** 这部分以实际的开发板为例,如BeagleBone、Raspberry Pi或STM32开发板,讲解如何进行硬件连接、固件烧录和系统启动过程。读者将学习如何使用串口通信工具进行调试,理解bootloader的作用,以及操作系统(如Linux或RTOS)在ARM上的运行机制。此外,还会涉及到驱动程序的编写和设备树配置,这些都是在实际项目中必不可少的技能。 **学习资源的利用** 本报告提供的学习资源不仅限于理论知识,还包括了丰富的实践案例和代码示例,帮助读者将理论与实践相结合,提升动手能力。通过学习这份报告,无论是对ARM新手还是有经验的开发者,都能增强对ARM体系结构的理解,提高开发效率,并为解决实际问题打下坚实的基础。 总结来说,"ARM学习报告一二三"是一份全面且深入的学习资料,涵盖了ARM从基础到高级的各个方面,是想要在嵌入式系统领域或者ARM开发上提升自己的人的宝贵财富。通过深入学习并实践报告中的内容,你将能够更好地掌握ARM技术,自如地应对各种开发挑战。
2025-04-28 10:48:09 8.65MB ARM 学习报告
1
国标国别代码,3位英文字母或3位数字,上报信息需要的通用国标国别代码。
2025-04-28 09:02:22 19KB 国别代码
1