深度学习(DL,Deep Learning)是计算机科学机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标-人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。  深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果 【深度学习】 深度学习是机器学习领域的一个重要分支,其核心在于构建深层次的神经网络模型,模拟人脑的学习过程,以实现对复杂数据的高效处理和理解。它旨在通过多层非线性变换,自动从原始数据中提取特征,从而解决模式识别、图像识别、语音识别等挑战性问题。 【卷积神经网络(CNN)】 卷积神经网络是深度学习中的关键架构,特别适合处理图像数据。CNN由卷积层、池化层、全连接层等组成,其中卷积层通过滤波器(或称卷积核)对输入图像进行扫描,提取特征;池化层则用于降低数据维度,减少计算量,同时保持关键信息;全连接层将前面层提取的特征进行分类决策。 【深度学习的应用】 1. **图像识别**:深度学习,尤其是CNN,已经在图像识别任务中取得了显著成就,如图像分类、物体检测、人脸识别等。 2. **语音识别**:深度学习可以用于语音信号的处理和识别,提高语音识别的准确率。 3. **自然语言处理**:在文本理解、语义分析、机器翻译等领域,深度学习通过词嵌入和循环神经网络等技术推动了显著的进步。 4. **推荐系统**:结合用户行为数据,深度学习可以生成个性化推荐,提高用户体验。 5. **自动驾驶**:在交通标志识别、车辆检测等自动驾驶的关键环节,CNN发挥了重要作用。 【本文主要贡献】 1. **改进LeNet-5模型**:通过对LeNet-5经典模型的扩展和调整,构建了不同结构的卷积神经网络模型,用于光学字符识别(OCR),分析比较不同模型的性能。 2. **多列卷积神经网络**:借鉴Adaboost的思想,设计了一种多列CNN模型,用于交通标志识别(TSR)。通过预处理数据和训练,提高了识别准确率。 3. **实验验证**:通过实验证明了CNN在手写数字识别和交通标志识别问题上的有效性,并与其他分类器进行了比较,评估了CNN在实际应用中的性能优势。 【总结】 深度学习和卷积神经网络的结合为解决复杂的人工智能问题提供了强大工具,从图像识别到自然语言理解,再到语音处理,都有广泛应用。本文通过构建和优化CNN模型,展示了其在光学字符识别和交通标志识别中的高效表现,进一步巩固了深度学习在这些领域的地位。随着技术的不断发展,深度学习和CNN在更多领域的潜力将持续被发掘,为人工智能的进步贡献力量。
2025-05-08 00:15:52 5.99MB 人工智能 深度学习 毕业设计
1
内容概要:本文介绍了一种改进的EfficientNet模型,主要增加了ContextAnchorAttention(CAA)模块。该模型首先定义了基础组件,如卷积层、批归一化、激活函数、Squeeze-and-Excitation(SE)模块以及倒残差结构(Inverted Residual)。CAA模块通过选择最具代表性的锚点来增强特征表示,具体步骤包括通道缩减、选择锚点、收集锚点特征、计算查询、键、值,并进行注意力机制的加权融合。EfficientNet的构建基于宽度和深度系数,通过调整每个阶段的卷积核大小、输入输出通道数、扩展比例、步长、是否使用SE模块等参数,实现了不同版本的EfficientNet。最后,模型还包括全局平均池化层和分类器。 适合人群:对深度学习有一定了解并希望深入研究图像分类模型的设计与实现的研究人员或工程师。 使用场景及目标:①理解EfficientNet架构及其改进版本的设计思路;②掌握如何通过引入新的注意力机制(如CAA)来提升模型性能;③学习如何使用PyTorch实现高效的神经网络。 阅读建议:由于本文涉及大量代码实现细节和技术背景知识,建议读者具备一定的深度学习理论基础和PyTorch编程经验。同时,在阅读过程中可以尝试复现代码,以便更好地理解各模块的功能和作用。
1
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1
内容概要:本资源中包含“simu.mlx”文件和"bertool_simu.ber"文件。"simu.mlx"文件中,使用了poly2trellis函数、convenc函数、vitdec函数等,能够对数据进行正确编码、译码。"bertool_simu.ber"文件中,通过Matlab仿真工具bertool,在Eb/N0:0~10dB条件下,绘制了BPSK调制卷积码的误码率曲线、未编码曲线,并对比了硬判决、软判决对性能的影响。 在信息论与编码领域,卷积码作为一种重要的信道编码技术,被广泛应用于数字通信系统中,用以提高数据传输的可靠性和纠错能力。卷积码的性能仿真对于理解和改进通信系统具有重要意义,MATLAB作为一种强大的数学计算与仿真软件,为卷积码的性能仿真提供了便利。 本资源的核心内容是一份名为“simu.mlx”的脚本文件,它利用MATLAB环境对卷积码进行编码和译码操作。在该文件中,poly2trellis函数用于创建卷积码的网格图(Trellis图),这是理解卷积码结构的重要一步。convenc函数则用于对数据进行卷积编码,它将输入的比特序列转换为编码后的序列,以增加冗余度来提高通信的鲁棒性。在接收端,vitdec函数实现了卷积码的维特比译码,这是一种常用的硬判决译码方法,能够从接收的码序列中恢复出原始的信息比特。 此外,另一个文件“bertool_simu.ber”提供了在特定信噪比(Eb/N0)条件下,利用MATLAB的bertool仿真工具绘制的误码率曲线。信噪比(Eb/N0)是衡量通信系统性能的一个关键参数,它表示了信号能量与噪声功率谱密度的比值。在这个文件中,仿真了从0到10dB的信噪比范围,并绘制了使用二进制相移键控(BPSK)调制的卷积码误码率曲线。该曲线展示了不同信噪比下,卷积码的性能,即误码率与信噪比之间的关系。 在这个仿真实验中,不仅有对卷积码性能的分析,还有对不同判决方式(硬判决与软判决)对性能影响的对比。硬判决通常意味着在译码过程中,接收到的信号要么是逻辑“0”,要么是逻辑“1”,这种方式简单但不够精确;而软判决则考虑到信号的相对幅度,提供了更精确的译码信息,因此通常能获得更好的误码率性能。在通信系统设计中,选择合适的判决方式能够有效地提升系统性能。 值得注意的是,尽管硬判决和软判决都是卷积码译码中重要的决策方法,但它们在实际应用中的表现会受到诸多因素的影响,包括信道特性、信号调制方式、编码和译码算法等。因此,理解这些因素如何影响性能,对于优化通信系统的设计至关重要。 通过对卷积码在不同条件下的性能仿真,可以为通信系统的设计者提供宝贵的数据支持,帮助他们选择合适的编码参数和译码策略,以达到最佳的通信效果。同时,MATLAB的仿真结果也可以用于验证理论分析和算法的有效性,是理论与实践相结合的典范。 信息论与编码是通信工程的基础学科,其中卷积码的研究和应用是这一学科中非常活跃的领域。随着无线通信技术的快速发展,对高速率和高质量通信的需求日益增长,卷积码的性能仿真也因此成为了通信系统设计中的重要环节。MATLAB作为实现这一环节的有效工具,其强大的仿真能力为研究者提供了极大的便利,使得复杂通信系统的性能评估变得直观且易于操作。 通过本资源的使用,我们可以深入理解卷积码的编码和译码过程,掌握其性能分析方法,并通过仿真结果来评估不同设计方案的优劣。这对于从事通信系统设计的工程师和技术人员来说,是一份宝贵的参考资料。同时,对于通信技术的学习者来说,这也是一份难得的实践材料,能够帮助他们更好地将理论知识与实际应用相结合,深入掌握信息论与编码的精髓。
2025-05-02 22:22:08 7KB 信息论与编码 MATLAB仿真
1
CNN卷积神经网络 FPGA加速器实现(小型)CNN FPGA加速器实现(小型) 仿真通过,用于foga和cnn学习 通过本工程可以学习深度学习cnn算法从软件到硬件fpga的部署。 网络软件部分基于tf2实现,通过python导出权值,硬件部分verilog实现,纯手写代码,可读性高,高度参数化配置,可以针对速度或面积要求设置不同加速效果。 参数量化后存储在片上ram,基于vivado开发。 直接联系提供本项目实现中所用的所有软件( python)和硬件代码( verilog)。 本篇文档主要探讨了如何将CNN卷积神经网络算法从软件层面迁移到硬件层面,具体来说就是使用FPGA硬件加速器来实现CNN模型。文档中提到的“小型CNN FPGA加速器”指的是针对卷积神经网络的小型化硬件实现,该项目已经通过了仿真测试,并且可用于深度学习领域的研究与教学。 文档描述了整个CNN算法的软件部分是基于TensorFlow 2框架实现的,这一部分主要是用Python编程语言来完成。在软件层面上,它包括了将CNN模型的权重导出的步骤。硬件实现则是通过Verilog硬件描述语言来完成的,这部分代码是完全手动编写的,保证了高可读性和便于理解。此外,该FPGA加速器设计是高度参数化的,允许用户根据对速度或面积的不同需求来配置加速效果。 在设计过程中,对参数进行了量化处理,并将这些量化后的数据存储在片上RAM中。整个设计过程是在Xilinx的Vivado开发环境中进行的。文档还提到,提供本项目实施中所使用的所有软件代码和硬件代码,这表明项目具有开放性,便于其他研究者和开发者进行学习和实验。 从文档提供的文件名称列表来看,包含了多个与项目相关的文件,这些文件很可能包含了项目的设计细节、实现方法、仿真结果和版图解析等内容。例如,“卷积神经网络加速器实现小版图解析”可能详细描述了FPGA加速器的硬件布局,“卷积神经网络加速器实现从软件到”可能探讨了从软件算法到硬件实现的转换过程。这些文件是了解和学习该项目不可或缺的资源。 本项目是一个将深度学习算法从软件迁移到FPGA硬件平台的实践案例,通过结合TensorFlow 2和Verilog语言,实现了一个可配置参数的CNN模型加速器。项目的设计充分考虑到了代码的可读性和灵活性,并提供了完整的实现代码,便于研究和教育使用。
2025-05-02 16:43:41 397KB scss
1
基于CNN的文本分类代码包,​CNN(Convolutional Neural Network)即卷积神经网络,本质上,CNN就是一个多层感知机,只不过采用了局部连接和共享权值的方式减少了参数的数量,使得模型更易于训练并减轻过拟合。在文本分类中,参考论文Convolutional Neural Networks for Sentence Classification https://arxiv.org/abs/1408.5882中的模型 ​对于单词的嵌入向量,有四种处理方法 1. 使用随机嵌入并在训练时进行更新; 2. 使用已有的嵌入向量,在训练时不作为参数更新; 3. 使用已有的嵌入向量,在训练时作为参数更新; 4. 结合2和3,将单词嵌入到两个通道的嵌入向量中,其中一个嵌入向量为固有属性,另一个嵌入向量作为参数进行更新。
2025-04-29 21:46:01 18.86MB nlp 卷积神经网络 机器学习
1
内容概要:本文档主要介绍了局部特征增强模块(LFE)的设计与实现,以及将其应用于ShuffleNet V2神经网络模型的方法。LFE模块包括通道注意力机制和空间注意力机制,通过这两个机制计算出的注意力图来增强输入特征图。具体来说,通道注意力机制通过全局平均池化、两个卷积层和Sigmoid激活函数来生成通道权重;空间注意力机制则通过一个卷积层和Sigmoid激活函数生成空间权重。接着定义了`add_lfe_to_stage`函数,用于将LFE模块插入到指定阶段的每个子模块之后。最后,`create_model`函数创建了一个带有LFE模块的ShuffleNet V2模型,并修改了最后一层全连接层的输出类别数。; 适合人群:对深度学习有一定了解,特别是熟悉PyTorch框架和卷积神经网络的开发者或研究人员。; 使用场景及目标:①理解注意力机制在卷积神经网络中的应用;②掌握如何自定义并集成新的模块到现有网络架构中;③学习如何调整预训练模型以适应特定任务需求。; 阅读建议:读者应具备基本的Python编程能力和PyTorch使用经验,在阅读时可以尝试运行代码片段,结合官方文档深入理解各个组件的作用和参数设置。
1
随着人工智能技术的发展,利用深度学习进行医疗图像分析成为一种前沿的研究方向。阿尔兹海默病作为老年人中常见的神经退行性疾病,其早期诊断对于患者的生活质量改善和医疗资源的合理分配至关重要。3D卷积神经网络(CNN)作为一种强大的深度学习模型,在处理三维图像数据方面具有独特的优势,因此被广泛应用于医学影像的分析与识别。 3D CNN在阿尔兹海默病智能诊断方面的研究,通常涉及以下几个关键步骤:收集大量的阿尔兹海默病患者和正常老年人的脑部MRI(磁共振成像)数据。这些数据经过预处理,如归一化、去噪、增强对比度等操作,以保证神经网络能够更有效地从中提取特征。接下来,研究者会构建3D CNN模型,该模型由多个卷积层、池化层和全连接层组成,能够自动提取并学习到图像中的空间特征。 通过训练过程,3D CNN模型会调整其内部参数,以最小化预测结果和实际标签之间的差异,即实现损失函数的最小化。训练完成后,该模型可以用于新样本的智能诊断,即对输入的脑部MRI图像进行处理,输出判断为阿尔兹海默病或者正常状态的概率分布。在Web应用环境下,3D CNN模型的训练和预测可以部署在服务器端,用户通过Web界面上传MRI图像,系统后台运行模型进行诊断,并将结果返回给用户,实现了一个完整的智能诊断Web应用流程。 这种基于Web界面的智能诊断系统不仅使得医生和医疗人员能够快速获取诊断结果,也使得患者能够方便地获得专业医疗建议,提高了医疗服务的可及性和效率。此外,该系统还可以作为一个数据收集平台,积累更多的临床数据,进一步优化和改进3D CNN模型的诊断性能。 在实际应用中,3D CNN模型的性能受到多个因素的影响,包括数据集的大小和质量、模型结构的复杂度、训练算法的选择等。因此,研究者需要对这些因素进行细致的调整和优化,以确保模型的诊断准确性。同时,随着技术的不断进步,未来还可能将更多的生物标志物和临床信息整合到模型中,以提升诊断的全面性和准确性。 基于3D CNN的阿尔兹海默病智能诊断Web应用,是人工智能在医疗领域应用的一个缩影,它展示了现代科技如何帮助提高疾病的诊断效率和准确性,同时为医学研究提供了新的视角和工具。随着相关技术的不断成熟,未来该领域还有巨大的发展潜力和应用前景。
2025-04-24 21:14:01 105.21MB
1
在MATLAB编程环境中,处理文件路径是常见的任务之一。标题“matlab开发-相对绝对卷文件名”涉及的核心概念是理解和操作文件的相对路径与绝对路径。这两种路径类型在文件系统的导航中扮演着不同的角色。 **绝对路径名**是文件或目录在文件系统中的完整路径,包括所有父目录直到根目录。它提供了从文件系统顶部开始到特定文件或目录的明确路线。例如,在Windows系统中,一个绝对路径可能看起来像这样:“C:\Users\Username\Documents\file.txt”。 相对路径名,顾名思义,是相对于当前工作目录的文件或目录路径。它不包含完整的文件系统路径,而是基于当前工作目录的位置来确定目标位置。例如,如果当前工作目录是“C:\Users\Username\Documents”,那么“file.txt”的相对路径就是“file.txt”。 在MATLAB中,`rel2abs`函数是用于将相对路径转换为绝对路径的关键工具。`rel2abs.m`这个文件很可能是一个实现此功能的MATLAB脚本或函数。在MATLAB中使用这个函数,你可以方便地根据当前工作目录,将任何相对路径转换为绝对路径,这对于处理多目录结构的项目尤其有用。 ```matlab absolutePath = rel2abs(relativePath) ``` 在这里,`relativePath`是你想要转换的相对路径字符串,而`absolutePath`将是返回的绝对路径。例如,如果你的当前工作目录是“C:\MyProject”并且`relativePath`是“subfolder\file.ext”,`rel2abs`会返回“C:\MyProject\subfolder\file.ext”。 `license.txt`文件通常包含了软件使用的许可协议信息,对于`rel2abs.m`函数来说,这个文件可能是其使用和分发的许可条款。 在数学领域,虽然这个话题主要涉及计算机科学,但MATLAB作为强大的数值计算和数据分析工具,经常被数学家和工程师用来处理各种问题。理解如何在MATLAB中正确处理文件路径,特别是在开发和共享代码时,是至关重要的技能。 掌握相对路径和绝对路径的概念,以及如何在MATLAB中使用`rel2abs`函数进行转换,对于任何在MATLAB环境下工作的开发者都十分必要。这有助于确保文件和数据的正确访问,尤其是在涉及到跨平台或团队协作的项目时。通过深入理解和实践这些基础知识,可以提高代码的可移植性和可靠性。
2025-04-24 10:45:36 2KB
1
python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95分毕设,python基于卷积神经网络的疲劳驾驶检测,95
1