只为小站
首页
域名查询
文件下载
登录
多变量时间序列异常检测数据集整理[可运行源码]
本文整理了五个常用的多变量时间序列异常检测数据集,包括SMD、SMAP/MSL、SWaT和WADI数据集,并提供了详细的标准化处理代码。这些数据集广泛应用于时间序列异常检测的基准测试,涵盖了不同领域的数据,如服务器机器数据、航天器遥测数据和水处理系统数据。文章详细介绍了每个数据集的具体信息、下载方式以及标准化处理步骤,包括时间格式统一、标签处理等。此外,还提供了针对MSL、SMAP、SMD、WADI和SWaT数据集的Python处理代码,帮助研究人员快速实现数据预处理。
2025-11-17 16:36:25
30MB
软件开发
源码
1
深入解析:基于COMSOL软件的三维损伤模型构建与损伤变量计算演化研究,COMSOL软件中损伤三维模型的构建与计算演化,comsol损伤三维模型 comsol软件通过自定义损伤变量和设置多个study
深入解析:基于COMSOL软件的三维损伤模型构建与损伤变量计算演化研究,COMSOL软件中损伤三维模型的构建与计算演化,comsol损伤三维模型 comsol软件通过自定义损伤变量和设置多个study实现损伤变量的计算和演化 ,损伤; comsol软件; 自定义损伤变量; study设置; 损伤计算; 损伤演化,Comsol软件:三维损伤模型构建与变量演化计算 基于COMSOL软件的三维损伤模型构建及损伤变量计算演化的研究是当前工程和科学研究领域的一项重要课题。随着科技的迅猛发展,特别是在材料学、结构工程及机械制造等领域,对于材料损伤过程的理解和预测变得尤为关键。材料在受力或环境因素影响下可能会产生损伤,如何准确地模拟和计算材料内部的损伤演化成为了一个亟待解决的技术难题。 COMSOL Multiphysics是一款高级的仿真软件,它能够处理多物理场耦合问题,提供了一种有效的工具来模拟材料的损伤过程。在该软件中,通过自定义损伤变量,研究者可以在模型中引入材料的损伤行为,如裂纹的形成、扩展以及最终的破坏。自定义损伤变量是一种重要的数值仿真技术,它允许研究者根据实际材料性能和实验数据来调整模型参数,以此来更加准确地预测材料的行为。 设置多个study在COMSOL中意味着能够在不同的条件和参数下进行仿真,这对于理解复杂条件下的材料损伤行为至关重要。例如,在一个研究中,可以设置多个study来研究温度变化、湿度变化、加载速率变化等因素对材料损伤的影响。通过这些不同的study,研究者可以得到更加全面和系统的仿真结果。 哈希算法作为一种安全的算法,通常用于数据完整性检验、加密、解密、数字签名及认证等方面。虽然从给定的文件名称列表中我们看到哈希算法被列为标签,但实际上在COMSOL软件中构建三维损伤模型以及进行损伤变量计算演化的研究中,哈希算法本身并非直接应用。这可能暗示了文档中除了专注于COMSOL软件的使用外,还可能涉及到了数据安全处理或验证过程的讨论。 结合提供的文件名称列表,我们可以看出文档中不仅有对COMSOL软件操作的具体介绍和深度解析,也有从不同视角对三维损伤模型技术的分析。文档可能包含了从理论基础、模型构建、参数设置到仿真结果分析的完整流程,以及对多个study设置的案例分析,旨在深入探讨软件在构建损伤模型和演算损伤变量方面的技术细节和应用方法。此外,内容还可能涵盖了从多元模型角度和跨学科视角下的损伤研究,以及如何利用技术博客文章来深入探讨和交流相关技术。 总结而言,本文详细介绍了基于COMSOL软件构建三维损伤模型的重要性和方法,涵盖了自定义损伤变量、设置多个study等关键技术点,同时可能还包含了对相关技术的综合分析和研究。对于相关领域的工程师和科研工作者来说,掌握这些知识对于提升材料分析能力和预测材料损伤行为具有重要的实践意义。
2025-11-15 10:29:30
3.45MB
哈希算法
1
大厂PFC程序:11kw PFC Mathcad程序参数变量计算书 - Mathcad v3.5
内容概要:本文详细解析了某大厂11kW功率因数校正(PFC)系统的参数设计过程,特别是利用Mathcad进行具体参数计算的方法。首先介绍了主回路采用的典型三相Vienna结构及其关键参数设定,如输入电压范围和开关频率的选择。接着深入探讨了电流环参数的设计,包括控制带宽、比例积分控制器增益的计算方法,并强调了实际应用中需要考虑的安全余量。此外,还讨论了热设计中的IGBT损耗计算以及温度补偿系数的应用。最后指出工程实践中对理论公式的修正,如电感量增加15%余量的经验做法。文中多次提到Mathcad工具的强大功能,如自动单位换算、矩阵计算生成损耗云图等,使得复杂计算变得直观易懂。 适合人群:从事电力电子设计的专业工程师和技术人员,尤其是对PFC系统有研究兴趣的人士。 使用场景及目标:帮助读者掌握大厂级PFC系统参数设计的具体步骤和技巧,提高实际项目中的设计水平;同时学会运用Mathcad软件辅助完成复杂的工程计算任务。 其他说明:文章不仅提供了详细的数学推导过程,还包括了许多来自实践经验的小贴士,有助于初学者避免常见错误并加深对相关概念的理解。
2025-11-05 08:09:59
882KB
1
MATLAB中实现EMD-KPCA-LSTM、EMD-LSTM和LSTM模型,以进行多变量时间序列预测(包含详细的完整的程序
内容概要:介绍了一种使用MATLAB实现EMD-KPCA-LSTM、EMD-LSTM与传统LSTM模型进行多变量时间序列预测的方法。从光伏发电功率的实际数据出发,在生成带噪声信号的基础上,逐步探讨了利用经验模态分解处理数据非稳性、主成分分析实现降维处理和构建LSTM预测模型的技术路径,提供了全面细致的操作指导。 适用人群:针对有一定编程能力和数学理论背景的研究人员和技术开发者,尤其适用于那些想要探索先进预测建模并在实际应用案例中有兴趣的人士。 使用场景及目标:主要目的是为了更好地理解和优化针对波动较大或不稳定时间序列的预测能力。通过比较各模型预测表现,找到最适合特定应用场景的最佳配置方案,从而支持相关领域的决策制定过程。 其他说明:文中附带了完整的工作实例、步骤讲解与源代码示例,有助于用户复现实验流程并进行相应的调整改进,进而提高研究效率或促进新项目启动。
2025-11-01 17:12:01
30KB
MATLAB
LSTM
EMD
KPCA
1
基于Transformer-BiGRU的多变量回归预测模型及其Matlab实现与应用
内容概要:本文介绍了基于Transformer-BiGRU的多变量回归预测模型,详细阐述了模型的构建方法、数据预处理流程以及在Matlab中的具体实现。该模型结合了Transformer和BiGRU的优势,能够有效处理多变量输入并提高回归预测的精度。文中还讨论了多种优化算法的应用,如冠豪猪CPO和霜冰RIME,用于参数自动化寻优,进一步提升模型性能。此外,文章提供了详细的代码注释和测试数据,方便初学者快速上手。最后,探讨了该模型在金融预测、气象预测、医疗诊断等多个领域的广泛应用前景。 适合人群:对机器学习和深度学习感兴趣的科研人员、学生以及有一定编程基础的数据分析师。 使用场景及目标:适用于需要处理多变量输入并进行高精度回归预测的研究项目。目标是帮助用户理解和实现基于Transformer-BiGRU的多变量回归预测模型,掌握模型调参技巧,应用于实际数据分析任务。 其他说明:附带完整的Matlab代码和测试数据,确保用户可以直接运行并验证模型效果。
2025-10-22 18:02:30
1.6MB
1
基于Matlab的高斯过程回归(GPR)单变量时序预测及不确定性量化实现
内容概要:本文详细介绍了一种利用Matlab实现高斯过程回归(GPR)进行单变量时间序列预测的方法。主要内容涵盖数据预处理(如z-score标准化)、选择合适的核函数(如平方指数核)、训练GPR模型、预测并生成置信区间以及评估预测性能的关键指标(如RMSE、区间覆盖率)。文中还提供了具体的代码示例,从数据加载、清洗、建模到最后的效果展示,帮助读者全面掌握GPR的应用流程。此外,针对常见的预测滞后问题提出了解决方案,并强调了GPR在不确定性量化方面的优势。 适合人群:对机器学习特别是时间序列预测感兴趣的初学者和有一定编程基础的研究人员。 使用场景及目标:适用于需要对未来某一时刻的数值做出预测并且希望获得相应置信区间的场合,如电力负荷预测、金融数据分析等。通过学习本文可以快速搭建起一套完整的GPR预测系统,用于研究或实际项目中。 其他说明:文中提到的一些技巧对于提高预测精度非常重要,例如正确选择核函数、合理设置超参数等。同时,作者也分享了一些实用的经验,如如何处理大规模数据集、怎样优化模型性能等。
2025-10-16 15:56:13
351KB
1
Matlab实现Transformer-LSTM多变量回归预测:模型构建、优化与应用
内容概要:本文详细介绍了如何利用Matlab实现Transformer-LSTM结合的多变量回归预测模型。首先,文章解释了Transformer和LSTM各自的特点及其结合的优势,特别是在处理长序列依赖和时间序列数据方面。接着,提供了具体的Matlab代码示例,展示了从数据预处理(如读取Excel文件并转换为数值矩阵)、模型搭建(包括定义Transformer和LSTM层)、训练(采用Adam优化器和动态学习率策略)到评估(使用R²、MAE、RMSE、MAPE等指标)的全过程。此外,还讨论了模型的灵活性,可以通过修改输出层轻松切换为分类或其他类型的预测任务。文中强调了数据质量和特征选择的重要性,并给出了一些优化建议,如引入特征交叉层或使用霜冰优化算法。 适合人群:对机器学习尤其是深度学习感兴趣的研究人员和技术爱好者,特别是那些希望使用Matlab进行数据分析和建模的人群。 使用场景及目标:适用于需要处理多变量时间序列数据的预测任务,如经济趋势预测、工业传感器数据处理、股票市场波动分析等。目标是帮助用户快速上手并有效应用这一强大的预测工具。 其他说明:文章不仅提供了完整的代码实现,还包括详细的注释和图表辅助理解,确保即使是初学者也能顺利运行程序。同时,针对可能出现的问题给出了实用的解决方案,如避免数据归一化的常见错误,以及如何应对特定情况下的模型性能不佳等问题。
2025-10-15 15:45:33
1.6MB
1
多维实高斯、复高斯随机变量的概率密度函数的推导
1)多维实数高斯随机变量PDF表达式的证明过程,并讨论其协方差矩阵R具备哪些特性,如Toeplitz特性等。 2)复高斯随机变量PDF表达式的证明过程,并讨论其推导中的假设条件在雷达、通信信号传输模型中是否成立。 3)多维复数高斯随机变量PDF表达式的证明过程,并讨论其协方差矩阵M具备哪些特性 对上述3个问题进行解答,总结在文档中。 在现代信号处理领域,随机变量的分布特性是分析信号特性与设计系统的重要基础。特别地,高斯随机变量因其在自然界中的普遍性,在信号处理、通信系统设计以及统计学中具有非常重要的地位。以下是对多维实高斯和复高斯随机变量概率密度函数推导过程的详细解读,以及对协方差矩阵特性的深入讨论。 对于多维实高斯随机变量,其概率密度函数(PDF)的表达式需要通过数学证明得到。在多维空间中,高斯随机变量由其数学期望向量和协方差矩阵唯一确定。协方差矩阵描述了不同维度间随机变量的线性相关性,是分析多维高斯分布的关键所在。 协方差矩阵具有以下几个重要特性: 1. 对称性:任何协方差矩阵都满足对称性,即Rij=Rji,这表明变量i与变量j之间的协方差等于变量j与变量i之间的协方差。 2. 半正定性:协方差矩阵必须是半正定的,这意味着对于任意非零向量x,都有x^TRx≥0。半正定性保证了多维高斯分布的方差为非负值。 3. Toeplitz特性:在某些特定条件下,例如平稳随机过程,协方差矩阵还会具有Toeplitz结构。这意味着协方差矩阵主对角线两侧的元素是对称的,仅依赖于行或列的相对位置差。这样的结构简化了复杂度,使得矩阵的某些计算更为方便。 在复高斯随机变量中,讨论概率密度函数(PDF)的推导同样需要深入理解其特性。复高斯随机变量可以由实部和虚部组成的复数表示,并且假设这两个分量是独立且具有相同方差的高斯随机变量。复高斯随机变量的PDF表达式与实高斯随机变量有所不同,这是因为复数的乘法和模运算引入了额外的复杂度。 对于多维复数高斯随机变量,其协方差矩阵M同样具有重要的特性。与实数高斯随机变量类似,M也需要满足对称性和半正定性。此外,M的特性还可能受到特定应用领域中的约束条件影响,比如在雷达和通信信号处理模型中,协方差矩阵的假设条件是否成立,会直接影响到信号的统计分析和系统设计。 在讨论这些高斯随机变量及其特性时,必须注意到它们在不同领域的应用背景。例如,雷达信号处理和通信信号传输模型中,信号往往会被假设为服从特定分布,并以此为基础进行系统设计和性能分析。在这些场景下,高斯随机变量的特性不仅对理论分析提供了便利,也直接关联到实际系统的性能指标。 多维实高斯随机变量和复高斯随机变量的PDF表达式的推导,是现代信号处理和统计分析的基础。通过深入理解这些表达式的推导过程,我们可以更好地掌握如何利用高斯分布来描述和分析复杂系统的信号特性。同时,对协方差矩阵特性的认识,也有助于我们优化算法设计,提高系统性能。
2025-10-06 01:27:31
98KB
协方差矩阵
雷达信号处理
1
易语言EXE_我是主程序源码,易语言共享变量指针模块
易语言共享变量指针模块源码,共享变量指针模块,测试_共享类,测试_共享自定义数据类型,测试_共享数组,测试_共享基本数据类型,设置属性值,获取属性值,测试_数组,测试_文本,测试_类,共享变量指针,共享数据指针,还原指针,同步指针
2025-10-05 19:18:48
306KB
共享变量指针模块
测试_共享类
1
Shap解释Transformer多分类模型,并且基于shap库对transformer模型(pytorch搭建)进行解释,绘制变量重要性汇总图、自变量重要性、瀑布图、热图等等 因为是分类模型,所以
Shap解释Transformer多分类模型,并且基于shap库对transformer模型(pytorch搭建)进行解释,绘制变量重要性汇总图、自变量重要性、瀑布图、热图等等 因为是分类模型,所以只用到了Transformer的Encoder模块,使用了4层encoder和1层全连接网络的结果,没有用embedding,因为自变量本身就有15个维度,而且全是数值,相当于自带embedding 代码架构说明: 第一步:数据处理 数据是从nhanes数据库中下载的,自变量有15个,因变量1个,每个样本看成维度为15的单词即可,建模前进行了归一化处理 第二步:构建transformer模型,包括4层encoder层和1层全连接层 第三步:评估模型,计算测试集的recall、f1、kappa、pre等 第四步:shap解释,用kernel解释器(适用于任意机器学习模型)对transformer模型进行解释,并且分别绘制每个分类下,自变量重要性汇总图、自变量重要性柱状图、单个变量的依赖图、单个变量的力图、单个样本的决策图、多个样本的决策图、热图、单个样本的解释图等8类图片 代码注释详细,逻辑
2025-09-22 20:43:22
4.78MB
xhtml
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
雷达信号处理仿真程序(MTI,MTD等)
QT自制精美Ui模板系列(一)桃子风格模板 - 二次开发专用
YOLOv5 人脸口罩图片数据集
多目标优化算法(四)NSGA3的代码(MATLAB)
多目标微粒子群算法MOPSO MATLAB代码
画程(版本6.0.0.127)setup个人版
RNN-LSTM卷积神经网络Matlab实现
copula程序及算法.zip
SSM外文文献和翻译(毕设论文精品).doc
csma/ca和csma/cd的matlab仿真源代码带有详细的注释
Vivado license 永久
transformer_pytorch_inCV.rar
PLECS中文手册.pdf
cplex_studio129.win-x86-64.exe CPLEX 12.9直接安装可使用
python大作业--爬虫(完美应付大作业).zip
最新下载
DELTAV7009中文
get_dll_from_dumped_bin.zip
foodmart 2000.mdb
ins-gps-ekf-master_INS_GPS/INS_EKF_阿萨_GPS/INS组合_组合导航算法_
全国GIS应用水平考试二级辅导教材
通达信 大阴转强.tn6 指标 个人珍藏
光刻机ASML内部培训资料 介绍芯片的制作流程以及光刻机的部分原理
ANSI_VITA_42_3-2006_XMC_PCIe
RTD_Customer_Tool
ECSHOP智付支付接口V3.0.5
其他资源
web搜索 pdf 郭军 北邮 电子书
datingTestSet2数据集
基于Libvlc库的c#中可进行录制/录像功能的源代码
python爬取豆瓣每个账户对电影的评分和影评,绘制评分饼图和影评词云图
数据挖掘概念与技术第三版课后答案
python随机森林应用实例
图书管理系统ssm+maven
图像去阴影的matlab实现
布谷鸟算法
通信原理实验报告_QPSK.pdf
汽车动力学simulink仿真程序很精典-EPS_Design_PD_data.m
SpringBoot中文参考手册
ExpandableListView
stm32f1 测量频率 脉冲参量测试仪 只能测频率 占空比没写出来
wps_symbol_fonts.7z
基于JSP的团购系统(源码+数据库)
运用XML Spy新建XML Schema的教程
storm-简介
统一软件开发过程RUP介绍文档.pdf
Pulsar-Flink连接器的介绍与使用
基于改进S变换的电压骤降检测程序
keil2汉化包
usb驱动接口
俄罗斯方块vc2008源码