yolov5/yolov8/yolo11/yolo目标检测数据集,人爬墙识别数据集及训练结果(含yolov8训练结果与模型),1016张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 2个类别:没爬墙,在爬墙。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151864777 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-10-30 17:10:49 122.32MB yolov5数据集 yolo数据集
1
随着人工智能技术的快速发展,深度学习模型在诸多领域展现出了卓越的性能,其中活体检测技术就是其应用的代表之一。活体检测旨在区分图像或视频中的人类面部是否属于真实在场的个体,而非照片、视频或其他替代品的展示,这对于提升安全系统的可靠性具有重要意义。 在本项研究中,开发者选择了一个名为CelebA-Spoof的数据集进行活体检测模型的训练。CelebA-Spoof数据集是由真实人脸图像和各类伪造的人脸图像组成,包含了丰富的面部变化,如不同的表情、角度、光照条件等,这为模型提供了充分的学习材料。通过训练这一数据集,模型能够学习到区分真实与伪造面部的关键特征。 在训练过程中,使用了深度学习中的卷积神经网络(CNN)架构,这是一种在图像识别领域表现出色的神经网络结构。经过多次迭代训练,模型逐渐学会了从输入的面部图像中提取有效的信息,并最终达到了在验证集上的高准确率——93.47%。这一准确率表明了模型在区分真实面部和伪造面部方面具有很高的判别能力。 为了进一步提高模型的实用性,研究者将训练好的模型导出为ONNX(Open Neural Network Exchange)格式。ONNX是一种开放式的模型格式,它使得模型能够在不同的深度学习框架之间自由转换,便于部署到各种硬件和软件平台上。例如,一个ONNX模型可以在Windows系统上通过Caffe2或ONNX Runtime运行,也可以在Android设备上通过NCNN库运行,大大提高了模型的应用灵活性和便利性。 在实际应用中,一个训练有素且高效易用的活体检测模型能够在门禁、支付验证、在线考试监控等多个场景中发挥作用。例如,在智能门禁系统中,系统通过活体检测技术可以有效防止不法分子利用照片或其他伪造手段进行欺骗;在在线支付场景中,通过活体检测确保交易双方身份的真实性,增加交易的安全性。 本项研究通过深度学习方法,利用CelebA-Spoof数据集训练出一个高准确率的活体检测模型,并成功将其转换为ONNX格式,为后续的模型应用提供了极大的便利。这不仅展示了深度学习在活体检测领域的巨大潜力,也为相关技术的落地应用提供了新的可能。
2025-08-25 17:11:49 5.13MB
1
本项目通过CPU共训练50轮,精度趋近于0.8。若想进一步提高精度,可增加数据集或增加训练轮数。 数据集地址:https://download.csdn.net/download/qq_63630507/89844778 在当前的智能化农业发展中,运用先进的图像识别和深度学习技术对农作物病虫害进行自动检测与诊断已经变得尤为重要。本项目聚焦于水稻病虫害的自动识别,采用的是目前较为先进的目标检测模型Yolov5。Yolov5作为一种基于深度学习的单阶段目标检测算法,以其运行速度快,检测精度高的特点,广泛应用于实时目标检测任务中。通过本项目的实施,旨在构建一个高精度的水稻病虫害智能识别系统。 在项目实施过程中,研究团队首先需要准备一个全面且高质量的水稻病虫害图像数据集。该数据集包含不同种类的水稻病害和虫害的图片,每张图片都应经过详细的标注,标注信息包括病虫害的类别及位置等,这为模型提供了训练的基础。通过数据集的准备,研究团队确保了模型训练有足够的信息去学习和识别各种病虫害特征。 考虑到计算资源和时间成本,项目选择了在CPU环境下进行模型训练,共计训练了50轮。尽管在计算能力有限的情况下,但通过精心设计的网络结构和合理的参数调整,模型的精度已经趋近于0.8,这是一个相对较高的准确率,表明模型在识别水稻病虫害方面已经具备了较好的性能。然而,项目报告也指出,若要追求更高的精度,可以考虑增加更多的数据集或延长训练轮数,以此来进一步提升模型的泛化能力和准确度。 项目最终构建的模型不仅能够帮助农民及时发现和处理病虫害问题,降低经济损失,还可以作为智能农业系统的一部分,实现对大规模种植区域的病虫害自动监测与预警。通过引入人工智能技术,不仅能够减轻农业工作者的负担,还能够提高作物的产量和品质。 在技术推广与应用方面,项目组还提供了数据集下载链接,便于更多的研究者和开发者获取和使用这些数据,共同推动智能农业识别技术的发展。这种开放共享的态度,有助于促进整个行业技术进步和农业生产的现代化。 本项目的实施是智能农业领域的一次重要尝试,它不仅推动了机器学习在农业领域的应用,更为水稻病虫害的精准识别提供了有效的方法和工具。通过本项目的成功实施,为未来利用智能化技术解决农业问题提供了新的视角和途径,具有重要的现实意义和深远的影响力。
2025-05-09 09:49:51 328.98MB 机器学习 Yolo 人工智能
1
针对中国机器人及人工智能大赛城市道路识别赛项的基于U-Net的车道线检测模型(包含原始图片,打标之后的文件,以及训练结果) 具体使用方法可参考笔者的上一篇博客:基于U-Net的车道线检测模型(中国机器人及人工智能大赛城市道路识别赛项) U-Net是一种流行的深度学习架构,主要用于图像分割任务,特别适合处理具有小数据集的问题。在自动驾驶领域,U-Net模型可以用来进行车道线检测,这一功能对于确保自动驾驶车辆安全、准确地行驶在道路上至关重要。 在中国机器人及人工智能大赛的城市道路识别赛项中,参赛者需设计和训练一个车道线检测模型。U-Net模型由于其结构设计和性能特点,被广泛应用于这一场景。U-Net模型的核心在于其对称的“U”形架构,该结构通过一系列卷积层、池化层和上采样层来捕获图像的上下文信息。模型的编码器部分负责逐步压缩输入图像,提取特征,而解码器部分则逐步恢复图像的空间分辨率,同时在上采样过程中合并特征,生成最终的分割图。 在车道线检测任务中,U-Net模型的训练数据包括原始道路图像以及相应的标记图像。标记图像中,车道线被清晰地标注出来,通常使用二值化或其他方法,以便模型能够学习区分车道线和其他道路表面。训练过程涉及将这些成对的数据输入模型中,通过反向传播算法调整模型参数,最小化预测分割图和标记图之间的差异。 该模型的成功应用不仅取决于其架构,还依赖于训练过程中的数据质量、标注准确性以及超参数的调整。在训练过程中,通常需要对模型进行多次迭代,不断优化以达到最佳性能。一旦训练完成,模型将能够准确地识别新图像中的车道线,为自动驾驶系统提供关键的视觉信息。 此外,U-Net模型的通用性和高效性使其成为处理医学图像分割、卫星图像分析等其他领域图像分割任务的理想选择。其独特的编码器-解码器结构使得它能够处理图像中的局部特征和全局上下文信息,同时保持空间层级结构,这对于精确的图像分割至关重要。 尽管U-Net模型在多个领域显示出强大的潜力,但其性能仍然受限于训练数据的质量和多样性。未来的研究可能会探索如何通过合成数据、数据增强或其他技术来改善模型的鲁棒性和泛化能力,以应对现实世界中各种复杂和不可预测的场景。 U-Net模型作为图像分割任务中的一个重要工具,其在车道线检测方面的应用是自动驾驶技术进步的一个缩影。通过精心设计的网络架构和严格的训练过程,U-Net不仅能够提供高质量的车道线检测结果,还能够为未来的自动驾驶系统集成提供坚实的技术基础。
2025-04-18 09:12:45 821.69MB 自动驾驶 U-net
1
该资源包含基于U-Net模型的医学图像分割任务完整代码及不同注意力机制(如SENet、Spatial Attention、CBAM)下的训练结果。资源实现了数据预处理、模型定义、训练与验证循环,以及结果评估与可视化,提供了详细的实验记录与性能对比(如Accuracy、Dice系数、IoU等关键指标)。代码结构清晰,易于复现和扩展,适用于医学图像分割研究和U-Net模型改进的开发者与研究者参考。 在人工智能领域,图像分割技术一直是一个备受关注的研究方向,特别是在医学图像分析中,精确的图像分割对于疾病的诊断和治疗具有重要的意义。ISIC(International Skin Imaging Collaboration)项目提供了大量的皮肤病医学图像,这对于研究和开发图像分割模型提供了宝贵的资源。UNet作为卷积神经网络(CNN)的一种变体,在医学图像分割领域表现出了优异的性能,尤其是它的结构特别适合小样本学习,并且能够捕捉图像的上下文信息。 本研究利用UNet模型对ISIC提供的皮肤病医学图像进行了分割,并在此基础上加入了注意力机制,包括SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等,以进一步提升模型性能。注意力机制在深度学习中的作用是模拟人类视觉注意力,通过赋予网络模型关注图像中重要特征的能力,从而提高任务的准确性。SENet通过调整各个特征通道的重要性来增强网络的表现力,而CBAM则更加细致地关注到特征的二维空间分布,为网络提供了更加丰富和准确的注意力。 研究结果表明,在引入了这些注意力机制后,模型的分割准确率达到了96%,这显著高于没有使用注意力机制的原始UNet模型。这样的成果对于医学图像的精确分割具有重要的意义,能够帮助医生更准确地识别和分析病灶区域,从而为疾病的诊断和治疗提供科学依据。 本资源提供了一套完整的医学图像分割任务代码,涵盖了数据预处理、模型定义、训练与验证循环、结果评估和可视化等关键步骤。代码结构设计清晰,方便开发者复现和对模型进行扩展,不仅对医学图像分割的研究人员有帮助,同时也对那些想要深入学习图像分割的AI爱好者和学生有着极大的教育价值。 通过对比不同注意力机制下的训练结果,研究者可以更深入地理解各种注意力机制对模型性能的具体影响。实验记录详细记录了各个模型的关键性能指标,如准确率(Accuracy)、Dice系数、交并比(IoU)等,这些都是评估分割模型性能的常用指标。通过这些指标,研究者不仅能够评估模型对图像分割任务的整体性能,还能够从不同维度了解模型在各个方面的表现,从而为进一步的模型优化提供指导。 这份资源对于那些希望通过实践来学习和深入理解医学图像分割以及U-Net模型改进的研究人员和开发人员来说,是一份宝贵的资料。它不仅包含了实现高精度医学图像分割模型的代码,还提供了如何通过引入先进的注意力机制来提升模型性能的实践经验。
2025-04-06 19:24:08 440.34MB UNet 注意力机制
1
口罩检测数据集,含有约130个数据,yolo训练结果良好
2024-04-25 15:02:23 18.35MB yolo 口罩检测 数据集
1
unet 训练结果 image-segmentation-keras-master
2022-11-28 12:25:39 667.02MB ai
1
编码标记物智能识别系统,YOLOv5训练结果模型,内含best.pt,last.pt,对编码标记物的识别率达95%以上
2022-07-05 21:05:42 24.82MB 编码标记物
1
Fasttext 用新闻数据进行模型训练 训练结果
2022-05-29 12:05:41 746.35MB NLP Fasttext
1
yolov5火焰识别数据集训练结果,原名为best.pt文件,然后自己重命名为fire.pt,类别名为fire,里面还有标注好的火焰数据集,有需要的可以下载使用
2022-05-23 18:35:18 16.97MB fire.pt yolov5
1