一、说明 SparkAi系统使用Nestjs和Vue3框架技术,持续集成AI能力到AIGC系统! 二、使用安装教程 环境安装 Nginx >= 1.19.8 MySQL >= 5.7或者MySQL 8.0 PHP-7.4 PM2管理器 5.5 Redis 7.0.11 Node版本:>=16.19.1 在代码中我们提供了基础 环境变量文件配置文件env.example,使用前先去掉后缀改为.env文件即可
2025-05-14 16:38:02 20.28MB AI
1
这是一本介绍AI的书,如有侵权请通知我下架 Over the past few years, a growing community of engineers and researchers have quietly rewritten the rules for how computers interact with the physical world. The result, a technology known as “edge artificial intelligence,” promises to upend a century of computer history and touch the lives of every human being. With a tiny software update, edge AI technology can grant cheap, energy-efficient processors— already inside everything from dishwashers to thermostats 《AI at the Edge》这本书揭示了边缘人工智能(Edge AI)这一新兴领域的理论与实践,它在计算机与物理世界交互方式的革新中起到了关键作用。边缘AI技术通过微小的软件更新,赋予了从洗碗机到恒温器等各种设备中的廉价、节能处理器以智能,预示着计算机历史的一次重大变革,并将触及每一个人的生活。 边缘AI是机器学习(Machine Learning)的一个分支,它将AI算法部署在数据生成的源头,即设备端,而非将数据传输到云端进行处理。这种方式减少了延迟,保护了隐私,同时降低了对网络带宽的需求。书中详细介绍了如何在构建边缘AI应用时克服挑战,帮助读者理解并解决实际问题。 作者Daniel Situnayake和Jenny Plunkett深入浅出地讲解了复杂的技术概念,使读者能够轻松理解和应用。这本书涵盖了从基础概念到最新硬件和软件工具的广泛主题,提供了从构思到部署的实用指南,适合初入该领域的人士阅读。书中的实例贯穿始终,让读者可以动手实践,加深理解。 书中还引用了多位专家的评价,他们一致认为,《AI at the Edge》为边缘AI领域提供了一个易懂且全面的入门教程。前YouTube视频分类团队负责人Aurélien Geron称赞其提供了深入的洞察力和清晰的思维框架。而嵌入式系统专家Elecia White则认为,这本书是创建更智能设备的绝佳指南,它结合了现代AI技术和嵌入式系统。 通过《AI at the Edge》,读者不仅可以了解到边缘AI的基础,如神经网络、传感器融合、实时数据处理等,还能掌握如何选择合适的硬件平台、优化模型以适应资源有限的边缘设备,以及如何进行有效的测试和调试。此外,书中可能还会探讨数据采集、模型训练、模型压缩、低功耗设计、安全性及伦理问题等关键议题。 《AI at the Edge》是面向工程师、研究人员以及对此感兴趣人士的一本宝贵的资源,它不仅提供了理论知识,还强调了实践应用,旨在帮助读者解决现实世界的复杂问题,推动边缘AI技术的发展。
2025-05-14 10:50:47 11.33MB AI MachineLearning
1
ai文章批量生成器,pdf,word,txt格式生成,集合deepseek,豆包,kimi,gpt等接口
2025-05-14 10:05:59 28.06MB pdf生成 word生成
1
软件简介: 专业AI原创文章批量自动生成工具,支持多种CMS,站群内容一键式管理分发,支持多任务创建,自动根据文章内容关联配图,每条任务支持独立AI模型、独立创作风格、独立写作模式,AI写作,高效的创作工具。 AI助理-功能特点 支持市面上所有主流建站系统,我们覆盖提升网络排名和流量的所有场景。 软件支持每个栏目设置最大发布数量和每篇文章发布间隔秒数,规避搜索引擎的检测。 根据文章关键词自动配图,图片拉取搜狗无版权图库,解决图片侵权问题。 通过提示词指令来控制AI生成的文章风格和类型,杜绝千篇一律。 自定义AI模型,可以每条任务使用不同的AI模型来生成文章。 通过填写过滤词,可以过滤掉AI生成的常用词汇,列如其次、首先、再者、总结等等,这些都是AI生成的常用词汇,过滤掉就能让文章原创度更高。 网站发布 支持添加系统对接的CMS网站系统。 支持自定义发布接口,可以给任何网站发布文章无需开发接口。 支持添加多个网站到软件内,同时发文时支持多网站同时发布。 支持每个站点多个栏目发布,同时可限制每个栏目发布条数。 支持每个站点的每个栏目发布间隔时间。 基础能力 支持CMS:易优、帝国、PbootCMS、DISCUZ、zblog、WordPress、emlog、yzmcms、微信公众号 支持AI模型:文心一言、通义千问、科大讯飞、deepseek、腾讯混元、KIMI、抖音豆包、智谱AI模型,国外AI模型支持:GPT3.5、GPT4.0、Anthropic、Gemini 文章配图:自动根据文章关键词从搜狗无版权图库内插入个关键词相关的图片 写作风格:通过提示词可以对生成的标题、内容进行控制,还可以通过提示词来控制写作系统角色,确保写出来的文章更好的模拟人工写作 AI过滤词:可以过滤掉AI生成常用的词汇和一些广告发不允许出现的词汇,避免被系统检测到AI生成和规避广告发禁止的发文内容 多任
2025-05-14 09:53:13 136.67MB 站长工具 原创文章生成
1
用AI开发软件:FTP管理工具(附完整代码)
2025-05-13 18:22:42 9.92MB 人工智能
1
ai 批量生成文章.zip
2025-05-13 18:20:53 57.05MB 人工智能
1
在当今快速发展的科技领域,人工智能(AI)已经成为一个热门话题,它与物联网(IoT)结合,形成了人工智能物联网(AIoT)这一新兴概念。AIoT将AI强大的数据处理能力与IoT广泛的设备互联互通相结合,旨在构建智能化的物联网解决方案。DVM-AIoT-AI资源包正是这样一个旨在提供人工智能在物联网中应用的综合性资源集合。 资源包中的“DVM”可能代表了这一资源集合的特定框架或技术栈的名称,它可能是一种确保设备虚拟化管理和AI模型部署的系统。其中的“AIoT”表示人工智能与物联网的结合,这代表着将AI能力嵌入到IoT设备中,使得这些设备能够执行更加复杂的任务,例如数据分析、预测性维护以及用户行为识别等。而“AI”自然指的是人工智能技术,它包括了机器学习、深度学习、自然语言处理等多种技术。 压缩包内的文件名称列表透露了该资源包可能包含的结构和内容。LICENSE文件通常包含了资源包的使用许可协议,为用户提供法律上的使用指导和限制。readme.txt文件则详细说明了资源包的安装、配置和使用方法,是用户开始使用资源包前的首要参考文件。pom.xml文件是Maven项目管理工具的核心文件,它描述了项目的构建配置,包括项目依赖、构建插件等信息。 iot-parent、iot-device、iot-system、iot-things、iot-infra等目录则揭示了资源包涉及的多个层面。其中,iot-parent可能是一个父项目或基础框架,用于管理其他子模块的版本和依赖关系。iot-device指的是与IoT设备相关的模块,可能包含了设备驱动、协议转换等功能。iot-system可能涉及系统的整体架构设计,包括数据流的处理和系统的稳定运行。iot-things聚焦于物联网的“物”部分,可能涵盖了设备的接入、管理以及应用层面的接口。iot-infra则可能包含了底层的基础设施构建,如消息队列、数据存储和计算框架等。 文件名中的“.image”可能表示了与镜像相关的文件,这通常与容器化技术相关,为AIoT应用提供便捷的部署和运行环境。iot-web则可能代表了一个网页应用,它允许用户通过Web界面访问和管理IoT设备和AI服务。 整体来看,DVM-AIoT-AI资源包提供了一套完备的工具和框架,使得开发者能够快速搭建起AIoT系统,利用人工智能技术对物联网中的数据进行分析和处理,实现智能化的应用和服务。无论是对于物联网企业还是独立的软件开发人员,这样的资源包都极大地降低了AIoT解决方案的技术门槛,加速了相关产品的研发和市场推出。
2025-05-09 08:49:19 37.87MB AIoT AI 人工智能
1
多模态人工智能系统很可能会在我们的日常生活中无处不在。使这些系统更具交互性的一个很有前景的方法是将它们具体化为物理环境和虚拟环境中的智能体。目前,各种系统利用现有的基础模型作为创建具身智能体的基本组成部分。将智能体嵌入到这样的环境中,有助于模型处理和解释视觉数据和情境数据,这对于创建更复杂、更具情境感知能力的人工智能系统至关重要。例如,一个能够感知用户行为、人类活动、环境中的物体、音频表达以及场景的整体情感氛围的系统,可用于在给定环境中为智能体的反应提供信息并指导其反应。 为了加速对基于智能体的多模态智能的研究,我们将 “智能体人工智能(Agent AI)” 定义为一类交互式系统,这类系统能够感知视觉刺激、语言输入和其他基于环境的数据,并且能够产生有意义的具身动作。特别是,我们探索了一些系统,这些系统旨在通过纳入外部知识、多感官输入和人类反馈,基于对下一步具身动作的预测来改进智能体。我们认为,通过在实际环境中开发智能体人工智能系统,人们还可以减轻大型基础模型产生幻觉的情况,以及它们生成与环境不符的输出的倾向。 新兴的智能体人工智能领域涵盖了多模态交互中更广泛的具身性和智能体相关方
2025-05-08 09:21:43 4.24MB 人工智能
1
在自然语言处理(NLP)领域,预训练模型已经成为一种重要的技术手段,通过在大规模语料库上训练,模型能够学习到丰富的语言表示,进而用于多种下游任务,如文本分类、情感分析、问答系统等。本文将详细介绍text2vec-base-chinese预训练模型的相关知识点,包括模型的应用、特点、以及如何在中文文本嵌入和语义相似度计算中发挥作用。 text2vec-base-chinese预训练模型是专门为中文语言设计的文本嵌入模型。文本嵌入是将词汇或句子转化为稠密的向量表示的过程,这些向量捕获了文本的语义信息,使得计算机能够理解自然语言的含义。与传统的one-hot编码或词袋模型相比,文本嵌入能够表达更复杂的语义关系,因而具有更广泛的应用范围。 text2vec-base-chinese模型的核心优势在于其预训练过程。在这一过程中,模型会通过无监督学习或自监督学习的方式在大量无标注的文本数据上进行训练。预训练模型通过学习大量文本数据中的语言规律,能够捕捉到词汇的同义性、反义性、上下文相关性等复杂的语言特性。这为模型在理解不同语境下的相同词汇以及不同词汇间的微妙语义差异提供了基础。 在中文文本嵌入模型的应用中,text2vec-base-chinese模型能够将中文词汇和句子转换为嵌入向量,这些向量在向量空间中相近的表示了语义上相似的词汇或句子。这种嵌入方式在中文语义相似度计算和中文语义文本相似性基准(STS-B)数据集训练中发挥了重要作用。中文语义相似度计算是判断两个中文句子在语义上是否相似的任务,它在信息检索、问答系统和机器翻译等领域都有广泛的应用。STS-B数据集训练则是为了提升模型在这一任务上的表现,通过在数据集上的训练,模型能够更好地学习如何区分和理解不同句子的语义差异。 text2vec-base-chinese模型的训练依赖于大规模的中文语料库,它通过预测句子中的下一个词、判断句子的相似性或预测句子中的某个词来训练网络。这使得模型在捕捉语义信息的同时,还能够学习到词汇的用法、句子的结构以及不同语言成分之间的关系。 值得注意的是,尽管text2vec-base-chinese模型在训练时使用了大规模语料库,但实际应用中往往需要对模型进行微调(fine-tuning),以适应特定的NLP任务。微调过程通常在具有标注数据的特定任务数据集上进行,能够使模型更好地适应特定任务的需求,从而提升模型在该任务上的表现。 在实际使用中,开发者通常可以通过指定的下载链接获取text2vec-base-chinese模型。这些模型文件通常包含了模型的权重、配置文件以及相关的使用说明。开发者可以根据自己的需求和项目特点选择合适的模型版本,并结合自身开发的系统进行集成和优化。 text2vec-base-chinese预训练模型在提供高质量中文文本嵌入的同时,为中文语义相似度计算等NLP任务提供了强大的技术支持。通过在大规模语料库上的预训练以及针对特定任务的微调,text2vec-base-chinese模型能够有效地解决多种中文自然语言处理问题,极大地促进了中文NLP领域的发展。
2025-05-06 10:07:26 362.2MB ai 人工智能 模型下载
1