悬浮物质量浓度是黄河口海域重要的水质和水环境监测参数之一,直接影响着水面以下光场的分布!进而影响水体的初级生产力和水域生态环境。本文基于2011年6-7月和11-12月共计89组现场实测悬浮物质量浓度和光谱数据!分析了黄河口及其附近海域不同悬浮物质量浓度的水体光谱特征,尝试利用多种波段组合建立悬浮物质量浓度遥感反演算法。结果表明865nm波段与波段比655nm/560nm组合形式算法反演结果最优!算法相关系数R2为0.95,平均相对误差为25.65%。将算法应用于2014-2016年共7景Landsat 8 OLI遥感影像!分析了不同年份黄河口悬浮物质量浓度的时空分布特征!黄河口海域悬浮物质量浓度分布总体呈现近岸高!离岸低的特点!不同时期悬浮物质量浓度量值上有显著变化。.
2026-01-18 15:33:57 4.13MB 研究论文
1
内容概要:本文是一段用于Google Earth Engine(GEE)平台的JavaScript代码脚本,主要实现了对研究区域(AOI)内2024年Landsat 8卫星影像的获取、预处理与分析。首先定义了一个地理范围矩形区域,随后加载了Landsat 8地表反射率数据集,并按空间范围、时间范围和云覆盖率进行筛选。接着通过自定义函数对影像应用缩放因子校正,生成中值合成影像并裁剪到研究区。在此基础上,计算归一化植被指数(NDVI)和归一化水体指数(NDWI),并对结果进行二值分类:NDVI ≥ 0.2 判定为植被,NDWI > 0.3 判定为水体。最后将原始影像、NDVI、NDWI及其分类掩膜可视化展示在地图上。; 适合人群:具备遥感基础知识和一定GEE平台操作经验的科研人员或学生,熟悉JavaScript语法者更佳;适用于地理信息、环境监测、生态评估等领域从业者。; 使用场景及目标:①实现遥感影像自动批量处理与指数计算;②开展植被覆盖与水体分布的快速提取与制图;③支持土地利用分析、生态环境变化监测等应用研究; 阅读建议:建议结合GEE平台实际运行该脚本,理解每一步的数据处理逻辑,可调整参数(如阈值、时间范围)以适应不同区域和研究需求,并扩展至多时相分析。
2026-01-06 11:32:32 3KB Google Earth Engine JavaScript
1
内容概要:本文档提供了Landsat-7 SLC-off影像空隙填充算法的实现代码。SLC-off是Landsat-7卫星扫描仪的一个故障,导致成像时出现条带状的缺失数据。该算法基于美国地质调查局(USGS)的L7 Phase-2空隙填充协议,使用Google Earth Engine (GEE) 平台进行实现。代码首先定义了一些参数,如最小和最大缩放比例、最少邻近像素数量等。接着,通过定义`GapFill`函数来实现主要的空隙填充逻辑。该函数接收源影像和填充影像作为输入,并利用核函数计算两个影像之间的共同区域,再通过线性回归计算缩放因子和偏移量,对无效区域进行处理,最后应用缩放和偏移并更新掩膜,完成空隙填充。此外,还展示了如何使用该函数对两幅具体的Landsat-7影像进行处理,并将结果可视化显示。; 适合人群:对遥感影像处理有一定了解的研究人员或开发者,特别是那些熟悉Google Earth Engine平台及其JavaScript API的人群。; 使用场景及目标:①适用于需要处理Landsat-7 SLC-off影像的研究或项目;②帮助用户理解如何在GEE平台上实现影像空隙填充算法;③为用户提供一个可复用的代码示例,以便根据具体需求调整参数或扩展功能。; 阅读建议:读者应先熟悉Landsat-7 SLC-off现象及其对影像质量的影响,以及GEE平台的基本操作。在阅读代码时,重点关注`GapFill`函数内部的工作流程,特别是如何通过线性回归计算缩放因子和偏移量,以及如何处理无效区域。同时,可以通过修改输入影像和参数值来探索不同情况下的空隙填充效果。
2025-12-13 23:03:34 4KB 遥感影像处理 Landsat Google Earth
1
内容概要:本文详细介绍了利用Google Earth Engine (GEE) 平台进行遥感数据分析的完整流程。首先,定义了研究的时间范围(2024年全年)和感兴趣区域(AOI),并设置了一个云掩膜函数来去除影像中的云和云阴影干扰。接着,从Landsat 8卫星影像集中筛选符合条件的影像,并对每个影像进行了预处理,包括计算归一化植被指数(NDVI)和地表温度(LST)。然后,通过线性回归方法确定了NDVI与LST之间的关系,进而计算了土壤湿度指数(TVDI)。最后,对样本点进行了统计分析,绘制了散点图,并计算了皮尔逊相关系数,同时将结果导出为CSV文件。 适合人群:具有遥感数据处理基础知识,特别是熟悉Google Earth Engine平台操作的研究人员或工程师。 使用场景及目标:①学习如何在GEE平台上处理Landsat 8影像;②掌握云掩膜技术的应用;③理解NDVI和LST的计算方法及其相互关系;④探索TVDI作为干旱监测指标的有效性;⑤了解如何进行数据可视化和统计分析。 阅读建议:由于涉及到多个步骤和技术细节,建议读者按照文中提供的代码顺序逐步执行,并尝试调整参数以观察不同设置下的效果变化。此外,对于不熟悉的地理信息系统概念或术语,可以通过查阅相关资料加深理解。
2025-12-06 20:35:53 3KB 遥感数据处理 JavaScript Earth
1
内容概要:本文档介绍了利用Google Earth Engine平台计算Landsat 8和Landsat 9卫星影像的叶面积指数(LAI)的方法。首先定义了时间范围为2022年到2024年,并设置了云量覆盖小于10%的筛选条件。然后通过影像集合操作,对每个影像进行了波段选择、反射率转换、NDVI(归一化植被指数)、EVI(增强型植被指数)计算,最终基于EVI得到LAI。为了确保数据的时间连续性和完整性,以8天为间隔创建了时间序列,并对每个时间段内的最大值进行合成,同时去除了无有效数据的影像。最后,绘制了LAI和NDVI的时间序列图表,以便于分析特定区域在指定月份内的植被变化情况。 适合人群:从事地理信息系统、遥感科学或生态学研究的专业人士,以及对植被动态监测感兴趣的科研工作者。 使用场景及目标:①用于研究植被生长周期与环境因素之间的关系;②评估不同季节或年度间的植被覆盖变化;③为农业、林业管理和环境保护提供科学依据。 其他说明:此文档提供了详细的代码示例,用户可以根据自身需求调整参数设置,如时间范围、空间范围和云量阈值等,以适应不同的研究目的。此外,建议用户熟悉Google Earth Engine平台的基本操作和Python/JavaScript编程语言,以便更好地理解和应用这些代码。
2025-10-13 21:45:27 2KB 遥感影像处理 LANDSAT NDVI Leaf
1
Sentinel-2上的多光谱仪器(MSI)和Landsat 8上的操作性陆地成像仪(OLI)的近天底观测是在两次同时进行的天底过桥(SNO)期间收集的。 采集了撒哈拉沙漠中空间均匀区域分辨率为10、20和30 m的多光谱图像,用于直接比较MSI和OLI大气顶层(TOA)反射率。 本文介绍了Sentinel-2 MSI和Landsat 8 OLI传感器的8个对应光谱带的初始辐射交叉校准。 以经过良好校准的Landsat 8 OLI作为参考,比较表明,在频谱带调整因子Bi的3%之内,6个MSI谱带与OLI一致。 近红外(NIR)和卷云波段是例外。 它们产生的辐射差异分别约为8%和15%。 交叉校准结果表明,除了卷云带以外,这7个相应谱带的放射线差异与OLI一致,误差在1%或更高。 MSI和OLI对不同土地覆盖的观测结果之间的逐像素匹配表明。 这项初步研究表明,在进行植被监测时,MSI的红边带B8A可用来代替NIR带B08。
2025-09-21 16:35:50 1.09MB 陆地卫星8 辐射校准 同时观测最低点
1
内容概要:本文旨在分析慕尼黑特蕾西恩维斯地区在2023年和2024年不同时间段(包括 Oktoberfest 期间)的地表温度(LST),以研究城市热岛效应。文中通过 Landsat 9 和 Sentinel-2 卫星影像数据,利用 Split-Window 算法计算 LST,并进行归一化处理和差异分析。此外,还计算了 NDVI、NDBI、NDWI 和 Albedo 等指数,并进行了土地覆盖分类。为了提高分辨率,采用了随机森林算法对 LST 数据进行降尺度处理。最后,通过统计分析和散点图验证了降尺度结果的有效性。 适合人群:具备一定遥感和地理信息系统(GIS)基础知识的研究人员和技术人员,尤其是对城市热岛效应和地表温度分析感兴趣的学者。 使用场景及目标:①分析特定区域(如 Oktoberfest 场地)在不同时间段的地表温度变化;②评估城市热岛效应的影响;③通过降尺度技术提高 LST 数据的空间分辨率;④验证降尺度方法的准确性。 阅读建议:此资源涉及多种遥感数据处理技术和算法,建议读者在阅读时结合实际案例进行实践操作,并重点关注代码实现和结果验证部分。同时,建议读者熟悉 Python 或 JavaScript 编程语言,以及 Google Earth Engine 平台的基本操作。
2025-06-22 14:25:25 35KB 地理信息系统 机器学习
1
为了实现定量化应用目标,高精度的云层检测已成为遥感数据预处理的关键步骤之一。然而,传统的云检测方法存在特征复杂、算法步骤多、鲁棒性差,且无法将高级特征和低级特征相结合的缺陷,检测效果一般。针对以上问题,提出了一种基于深度残差全卷积网络的高精度云检测方法,能够实现对遥感影像云层目标像素级别的分割。首先,编码器通过残差模块的不断降采样提取图像深层特征;然后,应用双线性插值进行上采样,结合多层次编码后的图像特征完成解码;最后,将解码后的特征图与输入图像融合后再次进行卷积,实现端到端的云检测。实验结果表明,对于Landsat 8云检测数据集,所提方法的像素精度达到93.33%,比原版U-Net提高了2.29%,比传统Otsu方法提高了7.78%。该方法可以为云层目标智能化检测研究提供有益参考。 【基于深度残差全卷积网络的Landsat 8遥感影像云检测方法】是一种利用深度学习技术改进遥感影像云层检测的创新方法。传统的云检测手段往往因为特征提取复杂、步骤繁多以及鲁棒性不足而限制了其在高精度应用中的表现。而该方法则旨在克服这些缺点,通过深度残差全卷积网络(Deep Residual Fully Convolutional Network,DRFCN)实现对遥感影像云层目标的像素级精确分割。 深度残差网络(Residual Network)是深度学习领域的一个重要突破,它通过引入残差块来解决深度神经网络中的梯度消失和爆炸问题,使得网络能更有效地学习到高层特征。在云检测中,DRFCN的编码器部分利用残差模块进行连续的下采样,这有助于提取图像的深层语义特征,如纹理、形状和颜色等与云层相关的重要信息。 全卷积网络(Fully Convolutional Network, FCN)在此过程中起到了关键作用,它允许网络直接进行像素级别的预测。在DRFCN中,经过编码器提取特征后,采用双线性插值进行上采样,目的是恢复图像的空间分辨率,同时结合不同层次编码后的图像特征进行解码。这种解码过程有助于保持从低层到高层的细节信息,确保了云检测的准确性。 解码后的特征图与原始输入图像融合,再次进行卷积操作,实现了端到端的云检测。这种方法的优势在于可以综合高级特征和低级特征,提高检测的鲁棒性和精度。实验结果显示,对于Landsat 8云检测数据集,该方法的像素精度达到了93.33%,相比原版的U-Net(Unet)提高了2.29%,相对于传统的Otsu方法提高了7.78%。 此方法不仅提升了云检测的精度,也为遥感影像分析的智能化和自动化提供了有效工具,特别是在气候监测、环境变化研究、灾害预警等领域具有广泛的应用潜力。未来的研究可以进一步优化网络结构,探索更高效的方法来融合特征,以及针对不同类型的遥感影像进行适应性调整,以提升在更大范围和更复杂条件下的云检测性能。
2025-06-04 12:25:18 2.36MB 深度学习 语义分割
1
1. 由于ENVI 4.4 中有专门进行辐射定标的模块,因此实际的操作十分简单。将原始TM 影像打开以后,选择 Basic Tools–Preprocessing–Calibration Utilities–Landsat TM 2. 进入下一步参数选择:根据传感器类型选择Landsat 4,5 或者7。从遥感影像的头文件中获取Data Acquisition 的时间,Sun elevation。如果你是用File–Open External File–Landsat–Fast 的方法打开header.dat 的话,sun elevation 就已经填好了。这里Calibration Type 注意选择为Radiance。输出文件,定标就完成了。
2024-03-27 11:34:19 15KB LANDSAT 图像校正
1
文中在研究遥感影像像素级融合算法的基础上,采用IHS、PCA、Brovey、HPF及Wavelet五种遥感影像像素级融合方法对ETM+数据的多光谱与全色影像进行融合实验,并从融合影像的光谱质量、信息损失、对比度扭曲、空间分辨力几个方面进行比较分析。结果表明,五种融合方法都有效的提高了影像的空间分辨率,但在一定程度上IHS、PCA、Brovey融合影像光谱信息较原始影像存在一定的失真。Wavelet融合法和HPF融合法在信息量和光谱保真性方面较好。在兼顾光谱信息和空间信息综合效应的基础上,认为HPF融合法是ETM+多光谱与全色数据最佳的融合方法。
2023-03-29 10:41:34 454KB ETM+ 像素级融合 IHS融合 Wavelet融合
1