JMP Start Statistics A Guide to Statistics and Data Analysis Using JMP(6th) 英文无水印原版pdf 第6版 pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2025-10-19 16:55:15 10.42MB Start Statistics Guide Statistics
1
本书《Python Data Analysis - Second Edition》深入介绍了使用Python进行数据操纵和复杂数据分析的过程。Python作为一种广泛使用的编程语言,因其简洁和高效的特性,在数据分析领域占据着重要地位。通过本书,读者能够学习到如何使用Python及其相关的库,如NumPy、pandas、matplotlib等,来进行数据处理、分析和可视化。数据分析过程中所涉及的主要步骤包括数据收集、清洗、探索、分析和解释,而Python的生态系统中提供了丰富的工具来支持这些步骤的实施。 在数据操纵方面,本书很可能会探讨pandas库的高级使用技巧。pandas是一个强大的数据分析工具包,提供了高性能、易于使用的数据结构和数据分析工具。它允许用户对数据进行各种操作,如数据合并、重塑、分组以及数据清洗等,这些都是数据科学中不可或缺的技能。通过这些操作,数据分析者能够将原始数据转化为可供分析和可视化的高质量数据集。 另外,本书在数据分析章节中,很可能会讲解统计分析的基本概念,以及如何运用Python中的统计函数和模型来提取数据中的有用信息。在复杂数据处理的过程中,算法的选择和应用尤为关键,本书可能会涵盖机器学习算法的基础知识以及如何将算法应用于实际数据集。 在数据可视化的部分,书中很可能会介绍matplotlib库的使用,这是一个Python的绘图库,可以创建高质量的二维图表。通过matplotlib,读者可以学习到如何制作图表来更直观地展示数据分析的结果。此外,本书可能也会介绍更先进的可视化工具,如Seaborn或Plotly,这些工具提供了更加丰富和动态的可视化选项。 本书所涵盖的内容不仅仅是理论的堆砌,还会包含大量的实例和案例研究,帮助读者将理论知识转化为实际操作能力。这些实例和案例研究将涵盖从数据准备到最终分析结果展示的整个流程,确保读者能够全面理解数据分析的过程。 在版权信息部分,本书声明了所有权利保留,未经授权不得复制、存储或通过任何方式传播,除了在批判性文章或评论中简短引用外。同时,书中也声明了包含的信息没有担保,无论是明示还是暗示的。作者、出版商以及分销商不承担由本书直接或间接造成任何损害的法律责任。出版商虽然努力提供了书中提及的所有公司和产品的商标信息,但并未保证信息的准确性。 《Python Data Analysis - Second Edition》是针对数据科学和数据分析的专业人士或学习者的一本重要参考资料。通过系统地介绍和示例演示,本书能够帮助读者掌握使用Python进行数据操纵和分析的技巧,进而提升数据处理和解读的综合能力。
2025-06-01 10:01:55 8.15MB Python
1
:“WES-data-Analysis:从FastQ到vcf”揭示了全外显子测序数据分析的全过程,从原始的测序数据处理到变异注释。 【内容详解】: 全外显子测序(Whole Exome Sequencing, WES)是一种广泛应用于基因组学研究的技术,它主要关注基因组中编码蛋白质的外显子区域。在这个过程里,“从FastQ到vcf”涵盖了生物信息学分析的关键步骤: 1. **质量控制**:FastQ文件是高通量测序产生的原始数据,包含序列读取和相应的质量分数。我们需要对这些数据进行质量检查,如使用FastQC工具,检查读取的长度、GC含量、质量分数分布等,以确保数据的质量。 2. **对齐**:接下来,使用比对工具如BWA-MEM将FastQ文件中的短序列读取对齐到参考基因组,如GRCh38。对齐结果通常保存为SAM或BAM格式。 3. **去除PCR重复和非模板添加**:在对齐过程中,可能会产生PCR重复和非模板添加的序列,需要使用如Picard工具来移除它们,以减少后续分析的噪声。 4. **变异检测**:使用GATK的HaplotypeCaller或者FreeBayes等工具进行变异 calling,找出与参考基因组不同的位点,包括SNPs(单核苷酸多态性)和INDELs(插入/缺失)。 5. **变异过滤**:为了提高变异的可信度,需要对叫出的变异进行过滤,比如使用GATK的 VariantFiltration工具,依据如QD(质量深度)、FS( Fisher's strand bias)、MQRankSum(马尔科夫质量秩和检验)等信息来过滤低质量变异。 6. **生成vcf文件**:变异检测和过滤后,会生成VCF(Variant Call Format)文件,这是一种标准格式,包含了所有变异的信息,如变异位置、类型、质量和过滤状态等。 7. **变异注释**:varaft软件用于对VCF文件进行注释,提供变异的功能影响预测,比如是否位于编码区域、是否影响氨基酸序列、是否存在于已知的疾病关联位点等。这一步骤有助于理解变异可能带来的生物学意义。 8. **结果解读和验证**:分析结果需结合临床信息进行解读,并可能通过实验验证,如Sanger测序,以确认发现的变异。 以上流程是WES数据分析的基本框架,每个步骤都至关重要,确保从海量的测序数据中提取出有价值的遗传变异信息。在实际操作中,还需要根据实验设计和研究目标调整分析策略。正确引用相关链接是对他人工作的尊重,也是学术规范的重要体现。
2025-04-20 18:57:57 2KB
1
Learn DAX Overview Videos DAX functions DAX function reference overview New DAX functions Date and time functions Date and time functions overview
2024-06-16 16:52:57 2.45MB Power
1
尽管静止状态功能磁共振成像越来越受到关注,但还没有用于其数据分析的软件。 基于MATLAB,我们开发了一个名为REST的软件包。 当前,REST具有三个主要功能:功能连接,ReHo和ALFF。
2024-02-01 23:48:17 8MB 开源软件
1
Density Estimation for Statistics and Data Analysis, Silverman著, 1986年版,核密度估计教材
2024-01-09 16:20:52 5.05MB Density Estimation
1
Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added. All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior. All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate Statistical Analysis offers the following new features: A new chapter on Variable Selection (Lasso, SCAD and Elastic Net) All exercises are supplemented by R and MATLAB code that can be found on www.quantlet.de. The practical exercises include solutions that can be found in Härdle, W. and Hlavka, Z., Multivariate Statistics: Exercises and Solutions. Springer Verlag, Heidelberg. Table of Contents Part I Descriptive Techniques Chapter 1 Comparison of Batches Part II Multivariate Random Variables Chapter 2 A Short Excursion into Matrix Algebra Chapter 3 Moving to Higher Dimensions Chapter 4 Multivariate Distributions Chapter 5 Theory of the Multinormal Chapter 6 Theory of Estimation Chapter 7 Hypothesis Testing Part III Multivariate Techniques Chapter 8 Regression Models Chapter 9 Variable Selection Chapter 10 Decomposition of Data Matrices by Factors Chapter 11 Principal Components Analysis Chapter 12 Factor Analysis Chapter 13 Cluster Analysis Chapter 14 Discriminant Analysis Chapter 15 Correspondence Analysis Chapter 16 Canonical Correlation Analysis Chapter 17 Multidimensional Scaling Chapter 18 Conjoint Measurement Analysis Chapter 19 Applications in Finance Chapter 20 Computationally Intensive Techniques Part IV Appendix Chapter 21 Symbols and Notations Chapter 22 Data
2023-09-18 20:12:47 11.83MB Multivariate Data Analysis
1
Python for Data Analysis每个章节中的数据。
2023-09-09 11:38:00 40.33MB Python for Data Analysis
1
武汉数据分析 该系列资源是Python疫情大数据分析,涉及网络爬虫,可视化分析,GIS地图,情感分析,舆情分析,主题挖掘,威胁情报溯源,知识图谱,预测预警及AI和NLP应用等。博客阅读,武汉必胜,湖北必胜,中国必胜! 发布者:Eastmount CSDN YXZ 2020-02-20 译文推荐: 我们们中国人一生的最高追求,为天地立心,为生民立命,为往圣继绝学,为万世开太平。以一人之力系。他们真是做到了,武汉加油,中国加油!
2023-04-13 00:22:29 36.37MB HTML
1
用Python进行Ansys数据分析 分析从Ansys仿真中提取的数据。
2023-04-05 19:01:27 178KB JupyterNotebook
1