onnxruntime-1.9.0-cp36-cp36m-linux_armv7l.whl 到onnxruntime-1.16.0-cp39-cp39-linux_armv7l.whl 版本都有 Python 3.6 支持 onnxruntime 1.9.0 ~ 1.16.0; Python 3.7 支持 onnxruntime 1.9.0 ~ 1.16.0; Python 3.8 支持 onnxruntime 1.9.0 ~ 1.16.0; Python 3.9 支持 onnxruntime 1.9.0 ~ 1.16.0; Python 3.10 支持 onnxruntime 1.9.0 ~ 1.16.0; Python 3.11 支持 onnxruntime 1.15.0 ~ 1.16.0;
2025-05-17 16:55:06 339.63MB armv7l onnxruntime yolo RaspberryPi
1
标题 "使用onnxruntime部署C2PNet图像去雾,包含C++和Python两个版本的程序.zip" 提供了一个关于图像处理和深度学习部署的场景。C2PNet(可能是Clear to see the Past Network)是一种用于图像去雾的深度学习模型,而ONNXRuntime是一个跨平台、高性能的推理引擎,用于运行ONNX(Open Neural Network Exchange)格式的模型。接下来,我们将深入探讨这两个关键概念以及如何在C++和Python中进行集成。 让我们理解C2PNet。C2PNet是一个深度学习网络,设计用于去除图像中的雾霾或雾气,提高图像的清晰度和可读性。这种模型通常基于卷积神经网络(CNN),通过学习从雾天图像到清晰图像的映射来实现去雾效果。它可能包含多个卷积层、池化层、激活函数(如ReLU)以及反卷积层,以恢复图像的细节。 然后,我们来看ONNXRuntimeONNXRuntime是一个开源项目,由微软开发,用于优化机器学习模型的推理性能。它可以支持多种框架(如TensorFlow、PyTorch、Keras等)生成的ONNX模型,并在不同平台上高效运行。ONNX是一种开放标准,旨在促进模型之间的互操作性,使模型可以跨各种框架和工具进行迁移。 接下来是程序部署的两个版本:C++和Python。C++版程序适合需要高性能和低延迟的应用,例如嵌入式系统或实时处理。Python版则提供了更高的开发灵活性和易用性,适合快速原型设计和测试。 在C++中集成ONNXRuntime,开发者需要: 1. 安装ONNXRuntime库。 2. 加载ONNX模型,这通常涉及创建一个` Ort::Session`对象并提供模型路径。 3. 准备输入数据,确保其符合模型的输入形状和数据类型。 4. 执行推理,调用`Session::Run()`方法。 5. 处理输出结果,提取去雾后的图像。 在Python中,步骤相对简单: 1. 导入onnxruntime库。 2. 创建`onnxruntime.InferenceSession`对象。 3. 使用`run()`方法执行模型,传入输入数据。 4. 获取输出结果,同样处理成去雾后的图像。 标签 "c++ c# c 编程语音" 暗示了程序可能也支持C#,但描述中并未明确提及。如果需要在C#中部署C2PNet,原理与C++类似,只是语法和API会有所不同。 总结来说,这个压缩包提供的资源是一个使用ONNXRuntime部署的C2PNet图像去雾解决方案,包括C++和Python两种实现。用户可以根据自己的需求和环境选择合适的语言进行部署,利用深度学习的力量来改善图像在雾天条件下的视觉效果。
2025-05-16 14:59:42 4.22MB 编程语音
1
中的知识点主要涉及到的是计算机视觉(Computer Vision)领域的一种高级应用——以文搜图(Image Retrieval)。在这个过程中,我们使用了OpenCV库,一个广泛用于图像处理和计算机视觉任务的开源库,以及ONNXRuntime,这是一个跨平台、高性能的机器学习推理框架。这里的关键技术是将自然语言文本转化为图像特征的表示,以便进行搜索匹配。 中进一步确认了这个项目的目标:当用户输入一段中文描述时,系统能够通过理解文本并匹配图像库中的图像特征,找出最符合描述的图片。这涉及到自然语言处理(NLP)和计算机视觉的结合,特别是文本到图像的语义映射。 **OpenCV**是计算机视觉中的重要工具,它提供了丰富的图像处理函数,包括图像读取、显示、转换、图像特征提取等。在以文搜图的应用中,OpenCV可能被用来预处理图像,如调整大小、去噪、色彩空间转换等,以便后续的特征提取。 **ONNXRuntime**是用于执行预先训练好的机器学习模型的运行时环境,它支持多种深度学习框架,如PyTorch、TensorFlow等。在本项目中,可能有一个基于CLIP(Contrastive Language-Image Pretraining)的模型被转换成ONNX格式,并在ONNXRuntime中运行。CLIP是一个强大的模型,它在大量文本-图像对上进行了预训练,能理解文本与图像之间的语义关系。 **CLIP**是来自OpenAI的一个模型,它通过对比学习的方式学习到了文本和图像之间的对应关系。输入中文描述后,CLIP模型可以将其转化为高维向量,这个向量代表了文本的语义信息。同样,图像也可以通过CLIP转化为类似的向量表示。通过计算两个向量的相似度,可以确定文本描述与图像的相关性。 **C++/C#/C 编程语言**标签表明项目可能使用了这些编程语言中的至少一种来实现上述功能。C++通常用于性能敏感的部分,如图像处理;C#可能用于构建更高级的用户界面或与系统交互的部分;而C语言可能是作为底层库或者与硬件交互的部分。 综合以上,这个项目涉及的技术栈相当广泛,包括计算机视觉、自然语言处理、深度学习模型的部署和优化,以及多语言编程。它展示了如何将先进的AI技术融入实际应用,以解决实际问题。对于开发者来说,理解和实现这样的项目不仅可以提升计算机视觉和NLP的技能,还能增强跨领域技术整合的能力。
2025-05-05 11:08:36 4.16MB 编程语音
1
YOLOv8-obb旋转框目标检测技术结合了YOLO(You Only Look Once)模型和旋转边界框(Oriented Bounding Box, OBB)检测算法,是一种用于图像中物体检测的先进方法。它能够识别和定位图像中的目标,并为每个目标绘制一个旋转的边界框,以此来更准确地描述目标在图像中的位置和姿态。 在本项目中,开发者提供了基于YOLOv8架构的旋转框目标检测模型,并通过ONNX Runtime实现高效部署。ONNX Runtime是微软开发的一个跨平台机器学习运行时引擎,支持ONNX(Open Neural Network Exchange)模型格式,它能够加速AI模型在不同平台上的部署和推理过程。 项目提供的完整代码包含了模型转换、加载以及推理的全部步骤。通过指定的转换工具将训练好的YOLOv8-obb模型导出为ONNX格式,这一步是必要的,因为ONNX Runtime需要ONNX格式的模型来进行推理。然后,在代码中加载这个转换后的模型,初始化推理环境,并对输入图像进行预处理。 推理阶段,输入图像经过预处理后送入模型中,模型输出包括目标的类别标签、旋转边界框的坐标和相应的置信度分数。这些输出数据后续需要经过后处理步骤来过滤掉低置信度的检测结果,并将旋转框转换为可视化的格式,以便在图像上绘制出精确的目标位置。 整个过程利用了ONNX Runtime优秀的性能,使得目标检测的实时性得到了提升。这对于需要实时处理视频流的场景(如自动驾驶、安防监控等)尤为关键。此外,代码可能还包含了一些优化策略,例如模型量化、加速库的使用等,这些都是提高性能的有效手段。 值得注意的是,虽然YOLOv8-obb结合了旋转框检测技术,但在实际部署时仍然需要注意模型的准确性和鲁棒性,特别是在面对图像中的遮挡、光照变化以及目标变形等复杂情况时。 代码的具体实现细节包括模型转换的参数设置、图像预处理的方法、推理过程中的内存和计算资源管理、结果的后处理和可视化等。开发者需要针对具体的应用场景进行调优,以达到最佳的检测效果和性能平衡。 此外,代码库可能还包括了示例脚本,以便用户可以快速理解和上手,这些示例可能涵盖了模型的基本使用、特定场景下的定制化修改以及与其他系统集成的方法等。 为了确保项目的顺利实施,可能还包括了依赖项的管理,比如指定ONNX Runtime的版本、其他相关深度学习库的版本等,确保环境的一致性和代码的可复现性。 这个项目为开发者提供了一个能够快速部署和应用YOLOv8-obb旋转框目标检测模型的完整方案,适用于各种需要高效准确目标检测的场合。通过这种方式,开发者能够节省部署时间,集中精力在模型的优化和业务逻辑的开发上。
2025-04-11 17:04:06 8KB yolo onnxruntime
1
树莓派自己编译的64位的onnxruntime-1.14.1 python3.9的whl轮子,有需要的可以自取,我不知道你们能不能用
2024-12-01 19:24:33 4.89MB onnx onnxruntime 1.14.1
1
标题中的“onnxruntime-gpu-1.18.0-cp38-cp38-linux-aarch64.whl.zip”是一个针对GPU优化的ONNX运行时库的压缩包,版本为1.18.0,适用于Python 3.8,并且是为Linux上的ARM架构(aarch64)设计的。ONNX(Open Neural Network Exchange)是一个开放的模型交换格式,它允许在不同的深度学习框架之间共享和运行模型。ONNX运行时则是用来执行这些模型的库。 描述中提到“适用JetPack 5.1.2”,JetPack是NVIDIA为Jetson系列嵌入式计算平台提供的软件开发套件,包含Linux操作系统、驱动程序、CUDA、cuDNN等。 JetPack 5.1.2是其中的一个特定版本,它包含了对Jetson设备的优化支持。同时,警告不要升级Jetson系统默认的Python 3版本,因为这个版本的ONNX运行时已经针对该特定Python环境进行了编译和优化,升级可能导致兼容性问题。 “标签”中的“linux”表明这是一个与Linux操作系统相关的软件包。 在压缩包内的文件“onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl”是一个Python的whl(wheel)文件,它是预编译的Python包格式,可以直接用pip安装,无需编译源代码。这个文件包含了ONNX运行时的GPU版本,适合在Linux环境下运行GPU加速的深度学习模型。 另一个文件“使用说明.txt”可能是关于如何在JetPack 5.1.2和Python 3.8环境中安装和使用ONNX运行时GPU版的指南。通常,它会包含以下步骤: 1. 确保你的Jetson设备已经更新到JetPack 5.1.2,并且保持Python 3.8不变。 2. 解压下载的“onnxruntime-gpu-1.18.0-cp38-cp38-linux-aarch64.whl.zip”压缩包。 3. 进入解压后的目录,找到“onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl”文件。 4. 使用pip安装whl文件: ``` pip install onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl ``` 5. 安装完成后,你可以通过导入`onnxruntime`模块来使用ONNX运行时,例如: ```python import onnxruntime ``` 6. 根据你的模型,创建会话实例并进行预测: ```python sess = onnxruntime.InferenceSession("path_to_your_model.onnx") output = sess.run(None, {"input_name": input_data}) ``` 7. 查看“使用说明.txt”以获取更多关于配置、性能调优以及解决常见问题的指导。 这个压缩包提供了在NVIDIA Jetson平台上运行ONNX模型所需的GPU加速的ONNX运行时库,适用于那些需要在边缘设备上进行高效推理的工作场景。遵循提供的说明,开发者可以轻松地将预训练的深度学习模型部署到Jetson设备上。
2024-10-24 17:24:00 68.05MB linux
1
YOLOv8是一种高效的目标检测模型,它是YOLO(You Only Look Once)系列的最新版本。YOLO系列以其快速和准确的实时目标检测能力而闻名,而YOLOv8则在此基础上进行了优化,提升了检测速度和精度。在本项目中,开发者使用了ONNXRuntime作为推理引擎,结合OpenCV进行图像处理,实现了YOLOv8的目标检测和实例分割功能。 ONNXRuntime是一个跨平台、高性能的推理引擎,它支持多种深度学习框架导出的ONNX(Open Neural Network Exchange)模型。ONNX是一种开放标准,可以方便地在不同的框架之间转换和运行模型。利用ONNXRuntime,开发者能够轻松地将训练好的YOLOv8模型部署到各种环境中,实现高效的推理。 OpenCV是一个强大的计算机视觉库,提供了丰富的图像处理和分析功能。在目标检测和实例分割任务中,OpenCV可以用于预处理输入图像,如缩放、归一化等,以及后处理预测结果,例如框的绘制和NMS(非极大值抑制)操作,以去除重叠的边界框。 YOLOv8模型在目标检测方面有显著提升,采用了更先进的网络结构和优化技术。相比于之前的YOLO版本,YOLOv8可能包含了一些新的设计,比如更高效的卷积层、自注意力机制或其他改进,以提高特征提取的效率和准确性。同时,实例分割是目标检测的延伸,它不仅指出图像中物体的位置,还能区分同一类别的不同实例,这对于复杂的场景理解和应用至关重要。 在这个项目实战中,开发者可能详细介绍了如何将YOLOv8模型转换为ONNX格式,然后在ONNXRuntime中加载并执行推理。他们可能还演示了如何使用OpenCV来处理图像,与YOLOv8模型接口交互,以及如何解析和可视化检测结果。此外,项目可能还包括了性能测试,展示了YOLOv8在不同硬件环境下的运行速度,以及与其他目标检测模型的比较。 这个项目提供了深入实践YOLOv8目标检测和实例分割的完整流程,对理解深度学习模型部署、计算机视觉库的使用,以及目标检测和实例分割算法有极大的帮助。通过学习和研究这个项目,开发者可以掌握相关技能,并将这些技术应用于自己的实际项目中,如智能监控、自动驾驶等领域。
2024-09-20 15:10:19 7.46MB ONNXRuntime OpenCV 目标检测 实例分割
1
标题 "onnxruntime-gpu-1.16.0-cp38-cp38-linux-aarch64" 指的是 ONNX Runtime 的 GPU 版本,版本号为 1.16.0,针对 Python 3.8 的运行环境,并且是专为 Linux 平台上的 ARM64 架构(AARCH64)设计的。ONNX Runtime 是一个高性能的推理引擎,它支持 ONNX(Open Neural Network Exchange)模型格式,用于跨框架执行深度学习模型的预测。 描述中提到,“onnxruntine-gpu 整个编译 Build 目录”,意味着这个压缩包包含了编译构建 ONNX Runtime GPU 版本的所有源代码和构建产物。用户可以使用 C++ 进行 `sudo make install` 命令来安装此库。这通常涉及到下载源码、配置构建环境、编译源代码以及最后将库安装到系统路径中,以便应用程序可以找到并使用它。 关于标签 "linux",这表明该软件是为 Linux 操作系统设计的。Linux 是一种广泛使用的开源操作系统,其稳定性、灵活性和性能使其成为服务器和高性能计算的首选平台。 "C++" 标签提示我们,ONNX Runtime 的 GPU 实现部分使用了 C++ 编程语言,这是一种底层、高效的语言,适合开发这种对性能要求极高的库。同时,C++ 也允许开发者更深入地控制硬件资源,如 GPU,以实现最佳的推理速度。 在压缩包内的 "build" 文件夹,通常包含以下内容: 1. 编译后的库文件(如 .so 或 .a 文件),这些是动态或静态链接库,可供其他程序调用。 2. 头文件(.h 或 .hpp),包含了库的接口定义,供开发者在编写应用时引用。 3. 可执行文件,可能是编译后的测试程序或示例。 4. 配置脚本,用于设置构建环境和编译选项。 5. Makefile 或 CMakeLists.txt,是构建系统的配置文件,指导编译过程。 为了在 Linux 系统上安装 ONNX Runtime GPU 版本,你需要按照以下步骤操作: 1. 确保系统满足依赖项:如 CUDA 和 cuDNN(如果未提供的话),以及其他依赖库如 Protobuf 和 Eigen。 2. 解压下载的压缩包,进入 build 目录。 3. 使用 CMake 配置构建(可能需要指定 CUDA 和 cuDNN 的路径)。 4. 执行 `make` 命令进行编译。 5. 使用 `sudo make install` 安装编译好的库到系统目录。 安装完成后,你可以通过编写 C++ 或 Python 代码,利用 ONNX Runtime 提供的 API 来加载和执行 ONNX 模型,利用 GPU 加速推理过程。这将极大地提升深度学习模型在预测阶段的效率。在实际应用中,ONNX Runtime 可以用于各种场景,如服务器端的在线推理、嵌入式设备的本地推理等。
2024-09-10 10:31:33 407.19MB linux
1
C++部署YOLO模型
2024-06-05 17:06:59 21.87MB 模型部署
1
onnxruntime1.15.0版本以后不支持win7以前的操作系统,即使重新编译源码也不行。 版本:onnxruntime1.14.0 操作系统:win7 编译器:VS2019 动态链接库为32位,release版本,已经win7 64位操作系统下VS2019 C++调用dll联调测试通过,现在共享出来给有需要的小伙伴。
2024-05-23 17:27:24 83.96MB 操作系统
1