基于FPGA的Cortex-M3 MCU系统:带AHB APB总线与UART硬件RTL源码,支持ARMGCC与SWD仿真调试,扩展功能丰富的MCU开发平台(暂不含DMA和高级定时器),基于FPGA的Cortex-M3 MCU系统:RTL源码工程,含AHB APB总线、UART串口、四通道定时器,配套仿真与驱动,可扩展用户程序与IP调试功能(非DMA和高级定时器版本),FPGA上实现的cortex-m3的mcu的RTL源码,加AHB APB总线以及uart的硬件RTL源代码工程 使用了cortex-m3模型的mcu系统,包含ahb和apb总线,sram,uart,四通道基本定时器,可以跑armgcc编译的程序。 带有swd的仿真模型。 可以使用vcs进行swd仿真读写指定地址或寄存器。 带有的串口uart rtl代码,使用同步设计,不带流控。 带有配套的firmware驱动,可以实现收发数据的功能。 带有的四通道基本定时器,可以实现定时中断,具有自动reload和单次两种模式。 用于反馈环路实现、freertos和lwip等时基使用。 暂时不包括架构图中的DMA,高级定时器和以太网,后期
2025-04-02 15:33:06 11.35MB 柔性数组
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体公司(STMicroelectronics)生产。在本文中,我们将深入探讨如何使用STM32的硬件SPI(Serial Peripheral Interface)和DMA(Direct Memory Access)功能来高效地控制OLED(Organic Light-Emitting Diode)显示屏。 OLED屏幕是一种自发光显示技术,无需背光,因此具有更高的对比度和更低的功耗。在STM32上驱动OLED屏幕通常涉及通过SPI接口发送命令和数据,而DMA可以极大地减轻CPU负担,提高系统效率。 1. **STM32硬件SPI**:SPI是一种同步串行通信协议,用于微控制器与外部设备间的数据传输。STM32内建了多个SPI接口,每个都支持主模式和从模式。在控制OLED屏幕时,STM32通常作为主机,OLED驱动芯片作为从机。配置SPI时,需要设置时钟极性(CPOL)、时钟相位(CPHA)、数据位宽、波特率等参数。 2. **DMA功能**:DMA是一种允许数据在内存和外设之间直接交换的技术,无需CPU干预。在STM32中,有多个DMA通道可以分配给不同的外设,如SPI。通过设置DMA传输请求源、传输数据大小、地址增量方式等,可以实现数据的批量传输,显著提高系统性能。 3. **配置OLED屏幕**:OLED屏幕通常使用I2C或SPI接口,这里我们关注SPI。需要初始化OLED驱动芯片,发送初始化序列,包括设置显示模式、分辨率、对比度等。这些命令通过STM32的SPI接口发送。 4. **DMA与SPI的配合**:在STM32中,设置SPI接口为DMA模式,指定相应的DMA通道。当SPI发送缓冲区为空时,DMA会自动从内存中读取数据并发送,直到所有数据传输完毕。这样,CPU可以执行其他任务,而不是等待SPI传输完成。 5. **数据传输**:在显示图像或文本时,需要将数据加载到内存中的一个缓冲区,然后通过DMA传输到SPI接口。STM32的库函数或HAL(Hardware Abstraction Layer)可以简化这个过程。 6. **中断处理**:为了确保数据正确发送,还可以设置SPI的中断,例如传输完成中断。当DMA传输结束时,中断处理函数会被调用,进行必要的清理工作,如重置传输标志,准备下一次传输。 7. **代码示例**:使用STM32CubeMX生成初始的SPI和DMA配置,然后在用户代码中编写OLED屏幕的初始化和数据传输函数。例如,使用HAL_SPI_Transmit_DMA()启动一个DMA传输,并在中断服务程序中处理传输完成事件。 8. **优化考虑**:在实际应用中,还需要考虑电源管理、显示刷新率、屏幕旋转等功能。同时,为了防止数据竞争,需要正确管理和同步SPI和DMA的访问。 总结,通过STM32的硬件SPI和DMA,我们可以高效地控制OLED屏幕,实现流畅的显示效果,同时降低CPU的负载,提升整个系统的响应速度和能效。理解和熟练掌握这些技术,对于开发基于STM32的嵌入式系统至关重要。
2025-03-31 20:43:47 7.82MB STM32
1
标题中的"SOGI_SOGI-PLL_SOGI_pwm_SOGI仿真_wayock_"涉及到的是一个与电力电子技术相关的仿真项目,特别关注SOGI(Second Order Generalized Integrator)和PLL(Phase-Locked Loop)的运用,以及PWM(Pulse Width Modulation)技术。在电力电子领域,这些是关键概念: 1. **SOGI(第二阶广义积分器)**:SOGI是一种线性电路,用于模拟非线性的系统行为。它具有两个积分器,能够处理各种信号,如正弦、方波甚至噪声,常用于控制系统的滤波和稳定。 2. **PLL(锁相环)**:PLL是一种电路,用于同步或锁定一个振荡器的相位到参考信号,通常用于频率和相位的同步。在电力电子中,PLL用于跟踪电网电压的频率和相位,对于电源系统同步和控制至关重要。 3. **PWM(脉宽调制)**:PWM是一种数字调制技术,通过改变脉冲宽度来改变平均功率。在电力电子中,PWM广泛应用于逆变器、开关电源和电机驱动,因为它能有效控制输出电压和电流,同时减少损耗。 4. **仿真**:在工程领域,仿真是一种使用计算机模型预测和分析系统行为的方法。此处的“SOGI仿真”可能指的是使用MATLAB/Simulink或其他仿真工具对SOGI-PLL系统进行建模和测试。 5. **wayock**:这个词在上下文中可能是用户或项目的特定术语,可能指某种特定的仿真方法或者配置,但没有明确的通用定义。在电力电子的背景下,可能是一个人名、工作流或特定的仿真策略。 根据描述,“SOGI一个仿真,自己搭的,功能是对的,可以测试。”这意味着作者已经创建了一个SOGI系统模型,并且包含了PLL和PWM组件,该模型经过验证,功能正确,可以用来进行进一步的测试和分析。 在压缩包中的"SOGI.slx"文件很可能是MATLAB Simulink的模型文件,其中包含了SOGI、PLL和PWM的仿真电路图。使用这个模型,用户可以调整参数,观察不同条件下的系统行为,评估其性能和稳定性。为了深入理解并优化这个系统,用户需要具备电力电子、控制理论和仿真工具的知识。
2025-03-29 19:41:44 34KB SOGI
1
【STM32+HAL】七针0.96寸OLED显示配置(SPI + DMA)是关于使用STM32微控制器通过SPI接口和DMA(直接内存访问)来驱动0.96英寸OLED显示屏的教程。这篇教程将涵盖STM32微控制器的基础知识,OLED显示屏的工作原理,SPI通信协议,以及如何利用STM32的HAL库进行DMA配置。 STM32是意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M系列内核的微控制器。它们广泛应用于嵌入式系统设计,以其高性能、低功耗和丰富的外设接口而受到青睐。 OLED(Organic Light-Emitting Diode,有机发光二极管)显示屏是一种自发光显示技术,每个像素由有机材料组成,当电流通过时会发出光。与LCD相比,OLED具有更高的对比度、更快的响应速度和更广的视角。0.96英寸OLED通常适用于小型嵌入式设备,如智能硬件、物联网设备等。 在STM32上配置OLED显示,首先需要理解SPI(Serial Peripheral Interface)通信协议。SPI是一种同步串行接口,允许主设备(在这里是STM32)与一个或多个从设备(OLED驱动芯片)进行全双工通信。SPI有四种传输模式,通过调整时钟极性和相位,可以实现灵活的数据传输方向和时序。 HAL库是STM32的高级层软件框架,它为开发者提供了标准化的API(应用程序编程接口),简化了底层硬件的控制。在配置OLED显示时,我们需要使用HAL库中的SPI初始化函数,设置SPI的工作模式、时钟频率、数据位宽等参数。 接下来是DMA的介绍。DMA是一种硬件机制,允许数据在没有CPU参与的情况下直接在内存和外设之间传输,从而提高系统的效率。在本例中,我们使用DMA来传输要显示的数据,减轻CPU负担。配置DMA涉及选择合适的通道,设置源和目标地址,以及传输长度。同时,还需要在SPI传输过程中启用DMA请求,以便在SPI完成数据发送后触发DMA传输。 具体步骤包括: 1. 初始化STM32系统时钟,确保足够的时钟资源供SPI和DMA使用。 2. 配置GPIO引脚,用于连接STM32和OLED的SPI接口及使能、复用等功能引脚。 3. 使用HAL_SPI_Init()函数初始化SPI接口,设置其工作模式、时钟速度等参数。 4. 配置DMA,使用HAL_DMA_Init()函数,指定传输方向、通道、地址和长度。 5. 将DMA与SPI接口关联,使用HAL_SPI_Transmit_DMA()函数开启传输,并在需要时启动DMA传输。 6. 编写中断服务程序,处理DMA传输完成的中断事件,更新显示数据或进行其他操作。 在实践中,还需要编写驱动代码来控制OLED显示特定的内容,这可能涉及对OLED显示芯片的命令序列的理解,例如初始化序列、清屏、设置坐标、显示文本或图像等。这部分通常涉及到与OLED驱动芯片的数据手册紧密相关的寄存器操作。 总结来说,"七针0.96寸OLED显示配置(SPI + DMA)"涵盖了STM32微控制器的HAL库使用,SPI通信协议,以及DMA传输机制,这些都是嵌入式系统开发中的重要知识点。通过学习和实践这个主题,开发者能够提升其在嵌入式系统设计和硬件驱动编程的能力。
2025-02-08 01:20:53 8.82MB stm32
1
野火无刷电机驱动板pcb,原理图,电源电压检测,电机电流检测,pwm控制信号
2024-12-20 17:37:43 15.63MB
1
STM32F407实现FFT,求频谱
2024-11-29 16:11:24 43.78MB stm32f407vet6 adc+dma dsp库 fft
1
在本文中,我们将探讨如何利用AT32微控制器的高级特性,包括高速ADC采样、PWM变频以及DMA(直接存储器访问)技术,来实现高效的数据处理和控制任务。AT32F437是一款高性能的微控制器,其内部集成了多个ADC单元和PWM定时器,以及强大的DMA控制器,这使得它非常适合于需要高速采样和实时控制的应用场景。 我们关注的是如何将AT32的ADC采样率提升至14.4MHz。常规的ADC采样率为4MHz,但通过巧妙地利用芯片资源,我们可以将其提高三倍。方法是利用三个独立的ADC通道,每个通道错开采集同一输入信号,然后将数据拼接,从而达到12MHz的采样率。在该过程中,ADC的时钟被设置为最大值的72MHz,每个12位转换需要15个ADC时钟周期。通过计算,我们可以得知采样频率为72MHz除以15乘以3,即14.4MHz。在实际测试中,通过配置Timer1触发ADC采样,使用DMA模式2进行数据传输,结果显示采样率接近14MHz,与理论计算相符。 接下来,我们讨论如何实现PWM频率从900kHz到1.1MHz的变频。这一任务需要用到DMA的多路复用功能,以及高级或通用定时器的DMA突发模式。具体操作中,选择Timer1的通道1映射到GPIOA的第8管脚,以驱动PWM输出。配置时,确保Timer的DMA设置正确,同时对GPIO进行适当配置,以便信号能够正确输出。在实际的实验中,虽然示波器捕获的波形并不完全按照900kHz到1.1MHz的频率变化,但证明了通过DMA和Timer的配合可以实现PWM频率的动态调整。 总结,通过AT32F437的ADC、PWM和DMA功能,我们可以实现高速的模拟信号采样和动态的数字信号输出。这样的技术组合对于实时信号处理和控制应用,例如音频处理、电机控制或者电力电子设备监控等,具有重要的价值。理解并熟练掌握这些技术,对于开发高效能的嵌入式系统至关重要。
2024-11-26 17:44:11 1.55MB AT32
1
STM32F407是意法半导体(STMicroelectronics)推出的一款高性能、低功耗的微控制器,属于Cortex-M4内核系列。在这个项目中,它通过SPI(Serial Peripheral Interface)接口与SPI Flash进行通信,并利用DMA(Direct Memory Access)技术来优化数据传输,提高系统的效率和响应速度。 SPI是一种同步串行通信协议,适用于多个设备间的简单通信。在SPI Flash中,数据以字节为单位进行传输,通常有一个主机(Master)和一个或多个从机(Slave)。STM32F407在这里作为主机,控制数据的发送和接收。SPI有四种工作模式:主模式发送、主模式接收、从模式发送和从模式接收。在这个项目中,STM32F407工作在主模式,用于控制SPI Flash的读写操作。 DMA是一种硬件机制,允许外设直接访问内存,而不需CPU参与。在STM32F407中,它提供了多个DMA通道,每个通道可以配置为不同的外设接口,如SPI。当使用DMA时,CPU可以执行其他任务,而数据传输在后台进行,大大降低了CPU的负担。在SPI Flash的读写操作中,DMA能实现高效、连续的数据传输,尤其对于大容量数据操作,效果显著。 项目"STM32F407 SPI FLASH DMA"可能包含以下关键部分: 1. **初始化配置**:STM32F407的初始化包括时钟配置、GPIO引脚配置(用于SPI接口)、SPI接口配置(如时钟相位和极性、数据大小等)以及DMA通道配置。 2. **SPI Flash驱动**:为了与SPI Flash交互,需要编写特定的驱动程序,包括初始化、读写操作函数等。这些函数会调用HAL库提供的SPI和DMA API来实现底层通信。 3. **DMA配置**:设置DMA传输参数,如源地址(SPI接口寄存器地址)、目标地址(内存地址)、传输长度、数据宽度等,并启动传输。 4. **中断处理**:当DMA传输完成时,会产生中断。需要编写中断服务例程来处理这些事件,例如更新状态、清理传输标志等。 5. **数据读写**:通过调用适当的函数,如`SPI_FLASH_Read()`和`SPI_FLASH_Write()`,实现对SPI Flash的读写操作。这些函数内部会利用DMA进行数据传输。 6. **错误处理**:确保在出现错误时能够正确处理,例如CRC校验失败、传输超时等。 7. **应用示例**:可能提供一些简单的应用程序示例,展示如何使用这些功能,比如读取和写入特定地址的数据。 项目中的"BSP_PRJ"可能是板级支持包(Board Support Package)的一部分,包含了所有必要的驱动和配置代码,使得开发者可以直接在STM32F407探索者开发板上运行这个示例。开发者可以在此基础上进行自己的应用开发,如构建固件升级系统、存储数据等。 STM32F407 SPI Flash DMA项目展示了如何利用STM32F407的强大功能进行高效的SPI通信,同时利用DMA技术提高系统性能。这为基于STM32F407的嵌入式系统开发提供了有价值的参考和实践案例。
2024-11-15 20:59:49 8.66MB STM32F407 SPI FLASH DMA
1
AT32F437是一款高性能的微控制器,由Atmel公司设计,广泛应用于工业控制、音频处理、物联网设备等领域。这款芯片集成了一个高级的3通道ADC(模拟数字转换器),可以实现高速的采样操作,如在本例中的14.4M采样率。这种高速采样能力对于实时数据采集和处理至关重要,尤其是在高精度信号分析和实时控制系统中。 ADC(模拟数字转换器)是微控制器与模拟世界交互的关键组件,它将连续的模拟信号转换为离散的数字值。在AT32F437中,3个ADC通道可以同时工作,提高系统并行处理能力,降低总采样时间。14.4M采样率意味着每秒钟能够进行14,400,000次采样,这对于高频率信号的捕获非常有利,例如在高频通信、声音和振动检测等应用中。 实现14.4M采样率,通常需要优化ADC的硬件配置和软件算法。其中,DMA(直接内存访问)是提高效率的关键技术。DMA允许数据直接在存储器和外设之间传输,无需CPU干预,从而减少了CPU负担,提高了整体系统性能。在AT32F437中,可以配置DMA来自动将ADC转换结果传输到RAM或特定寄存器,这样CPU可以专注于其他任务,而不会因等待ADC采样结果而被阻塞。 ADC的设置包括选择采样率、分辨率、转换序列、触发源等。在AT32F437中,可能需要调整预分频器、ADC时钟和采样时间等参数,以达到14.4M的采样速率。同时,为了确保数据准确无误,还需要考虑噪声抑制、参考电压稳定性、输入信号滤波等问题。 此外,ADC的校准也是必不可少的步骤。由于制造过程中的差异,每个ADC可能存在轻微的偏移或增益误差,校准可以减少这些误差,提高测量精度。在AT32F437中,通常会提供内置的校准功能,通过执行特定的校准序列来补偿这些偏差。 文件“3adc实现14Madc采样”可能包含了实现这一高速采样率的具体代码示例、配置参数和调试技巧。通过深入研究这份文档,开发者可以了解如何正确配置ADC、DMA及相关寄存器,以及如何编写高效的控制程序来实现这个高性能的采样系统。 AT32F437的3通道ADC结合14.4M采样率和DMA技术,为高性能实时数据采集提供了强大支持。理解并掌握这些技术,可以帮助开发者设计出高效、精确的嵌入式系统。
2024-11-12 16:40:50 5.48MB DMA+ADC
1
### Linux PWM驱动编写详解 PWM(Pulse Width Modulation,脉冲宽度调制)是一种用于数字信号输出模拟信号的技术,在嵌入式系统中非常常见,主要用于控制电机速度、LED亮度等场景。本文将深入探讨Linux PWM驱动的编写过程,帮助读者理解如何在Linux内核中实现PWM功能。 #### 一、PWM基础概念 PWM通过改变高电平持续的时间来模拟不同的电压等级,从而达到控制外部设备的目的。例如,当PWM信号为100%占空比时,输出为全电压;而当PWM信号为0%占空比时,则无电压输出。通过这种方式,可以实现对电机速度或LED亮度的平滑调节。 #### 二、Linux PWM驱动框架 Linux内核提供了一套完善的PWM框架,方便开发者编写各种不同硬件平台上的PWM驱动程序。该框架主要包括以下几个关键组件: 1. **`drivers/pwm` 目录**:存放所有与PWM相关的驱动代码。 2. **`drivers/pwm/Kconfig` 文件**:定义了编译选项,允许用户在编译内核时选择支持哪些具体的PWM驱动。 - **`CONFIG_PWM_SAMSUNG`**:表示是否启用三星(Samsung)系列处理器的PWM支持。 3. **Makefile配置**:确定哪些模块将被编译并包含到内核中。 - `obj-$(CONFIG_PWM)+=core.o`:表示如果启用了PWM支持,则会编译`core.o`。 - `obj-$(CONFIG_PWM_SAMSUNG)+=pwm-samsung.o`:表示如果启用了三星PWM支持,则会编译`pwm-samsung.o`。 4. **`pwm-samsung.c` 文件**:包含针对三星系列处理器的PWM驱动代码。 - **平台驱动结构体**: ```c static struct platform_driver pwm_samsung_driver = { .driver = { .name = "samsung-pwm", .pm = &pwm_samsung_pm_ops, .of_match_table = of_match_ptr(samsung_pwm_matches), }, .probe = pwm_samsung_probe, .remove = pwm_samsung_remove, }; module_platform_driver(pwm_samsung_driver); ``` - **函数注册**:通过`pwmchip_add()`函数向内核注册PWM芯片。 - **操作接口**:定义了一系列PWM操作接口,如请求、释放、使能、禁用等。 ```c static const struct pwm_ops pwm_samsung_ops = { .request = pwm_samsung_request, .free = pwm_samsung_free, .enable = pwm_samsung_enable, .disable = pwm_samsung_disable, .config = pwm_samsung_config, .set_polarity = pwm_samsung_set_polarity, .owner = THIS_MODULE, }; ``` 5. **设备树匹配表**:使用设备树来匹配特定的硬件平台。 ```c static const struct of_device_id samsung_pwm_matches[] = { {.compatible = "samsung,s3c2410-pwm", .data = &s3c24xx_variant}, {.compatible = "samsung,s3c6400-pwm", .data = &s3c64xx_variant}, {.compatible = "samsung,s5p6440-pwm", .data = &s5p64x0_variant}, {.compatible = "samsung,s5pc100-pwm", .data = &s5pc100_variant}, {.compatible = "samsung,exynos4210-pwm", .data = &s5p64x0_variant}, {}, }; ``` - 上述匹配表中包含了多个三星处理器型号,例如`s3c2410`、`s3c6400`、`s5p6440`等。 6. **设备树解析函数**:通过解析设备树节点来初始化PWM驱动。 ```c static int pwm_samsung_parse_dt(struct samsung_pwm_chip *chip) { struct device_node *np = chip->chip.dev->of_node; const struct of_device_id *match; struct property *prop; const __be32 *cur; u32 val; match = of_match_node(samsung_pwm_matches, np); if (!match) return -ENODEV; memcpy(&chip->variant, match->data, sizeof(struct samsung_pwm_variant)); ... } ``` #### 三、PWM驱动实现流程 1. **加载驱动**:通过Makefile配置选项,确保相应的PWM驱动被编译进内核。 2. **初始化PWM芯片**:在平台驱动的`probe`函数中,通过`pwmchip_add()`函数向内核注册PWM芯片。 3. **注册操作接口**:定义一系列PWM操作接口,如请求、释放、使能、禁用等,并通过`pwm_samsung_ops`结构体注册。 4. **设备树匹配**:使用设备树匹配表来识别特定的硬件平台,并调用对应的初始化代码。 5. **设备树解析**:通过解析设备树节点来获取必要的配置信息,进一步初始化PWM驱动。 通过以上步骤,开发者可以有效地在Linux内核中实现针对特定硬件平台的PWM驱动程序。这些技术细节不仅适用于三星系列处理器,也适用于其他支持Linux PWM框架的硬件平台。
2024-10-18 09:16:40 45KB linux pwm驱动 linux驱动编写 linux
1